§3.2 (有限)积空间
本节重点:
掌握乘积空间的度量与拓扑的定义.
掌握积拓扑的基与子基的结构.
掌握投射的定义与性质.
掌握定理3.2.7与定理3.2.9的作用.
给定了两个拓扑空间,我们首先可以得到一个集合作为它们的笛卡儿积.如何按某种自然的方式给定这个笛卡儿积一个拓扑使之成为拓扑空间?
为此我们先对度量空间中的同类问题进行研究.首先回顾n维欧氏空间中的度量是如何通过实数空间中的度量来定义的:如果x= ,y=,则x与y的距离定义为
其中是R中的两个点的通常距离.这种定义方式推广到有限个度量空间的笛卡儿积中去不会产生任何困难.
令X=.定义 ρ:X×X→R使得对于任何x=
y=∈X,
容易验证ρ是X的一个度量.(请自行验证,注意验证中要用到2.1节附录中的Schwarz引理)我们称ρ为笛卡儿积X=的积度量;称度量空间(X,ρ)为n个度量空间的度量积空间.
根据上述定义明显可见,n维欧氏空间就是n个实数空间R的度量积空间,
先来考察积度量所诱导出来的拓扑有什么样的性质,以便使我们得到在拓扑空间中应该如何引出积空间的概念的启示.
定理3.2.1 设是n>0个度量空间,(X,ρ)是它们的积空间.又设和分别是由度量和ρ所诱导出来的和X的拓扑,其中i=l,2,…,n.则X的子集族:
B={ | i=1,2,…n}是X的拓扑的一个基.
证明:我们仅就n=2的情形加以证明.
首先根据积度量的定义容易得到(请自行验证):对于任意x=∈X和任意ε>0,我们有:
设∈B,其中分别是中的开集.
如果x=∈则