4.2 连通性的某些简单应用

本文探讨了实数空间R中连通子集的特性,尤其是区间与连通性的关系。通过定理4.2.1证明了包含至少两个点的连通子集等价于区间。此外,展示了连通性在连续映射、介值定理、不动点定理中的应用,并通过定理4.2.7证明了欧氏平面与实数空间R的不同胚性质。
摘要由CSDN通过智能技术生成

§4.2 连通性的某些简单应用

  本节重点:掌握实数空间R中的连通子集的“形状”

  掌握实数空间R的子集中常见的连通子集与不连通子集.

  掌握常见的几种空间的同胚与否的事实.

  让我们回忆实数集合R中区间的精确定义:R的子集E称为一个区间,如果它至少包含两个点,并且如果a,b∈E,a<b,则有

   [a,b]={x∈R|a≤x≤b}E

  读者熟知,实数集合R中的区间共有以下9类:

  (-∞,∞),(a,∞),[a,∞),(-∞,a),(-∞,a]

   (a,b),(a,b],[a,b),[a,b]

  因为,一方面以上9类集合中的每一个显然都是区间;另一方面,如果ER是一个区间,可视E有无上(下)界,以及在有上(下)界的情形下视其上(下)确界是否属于E,而将E归入以上9类之一

  在定理4.1.2中我们证明了实数空间R是一个连通空间.因为区间(a,∞),(-∞,a)和(a,b)都同胚于R(请读者自己写出必要的同胚映射),所以这些区间也都是连通的;由于

  

  根据定理4.1.5可见区间[a,∞),(-∞,a],[a,b

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值