§8.2 度量空间的完备性与紧致性

§8.2 度量空间的完备性与紧致性

  定义8.2.1 设(X,ρ)是一个度量空间,ε>0是一个实数.X的有限子集A称为一个ε网,如果对于任何x∈X有ρ(x,A)<ε.如果对于任何实数ε>0,X有一个ε网,则称度量空间(X,ρ)是完全有界的.

  一个度量空间是完全有界明显蕴涵着它是有界的.反之不然,例如包含着无限多个点的离散度量空间是有界的但不是完全有界的

  定理8.2.1 设(X,ρ)是一个度量空间,则(X,ρ)是紧致的当且仅当(X,ρ)是一个完全有界的完备度量空间.

没有更多推荐了,返回首页