第4章 连通性
本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间.
§4.1 连通空间
本节重点:
掌握连通与不连通的定义;
掌握如何证明一个集合的连通与否;
掌握连通性的拓扑不变性、有限可积性、可商性.
我们先通过直观的方式考察一个例子.在实数空间R中的两个区间(0,l)和[1,2),尽管它们互不相交,但它们的并(0,1)∪[l,2)=(0,2)却是一个“整体”;而另外两个区间(0,1)和(1,2),它们的并(0,1)∪(1,2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0,l)有一个凝聚点1在[1,2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用术语来区别这两种情形.
则称子集A和B是隔离的.
明显地,定义中的条件等价于和 同时成立,也就是说,A与B无交并且其中的任何一个不包含另一个的任何凝聚点.
应用这一术语我们就可以说,在实数空间R中,子集(0,1)和(1,2)是隔离的,而子集(0,l)和[1,2)不是隔离的.
又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个无交的子集都是隔离的.
定义4.1.2 设X是一个拓扑空间.如果X中有两个非空的隔离子集A和B使得X=A∪B,则称X是一个不连通空间;否则,则称X是一个连通空间.
显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间.
定理4.1.1 设X是一个拓扑空间.则下列条件等价:
(l)X是一个不连通空间;
(2)X中存在着两个非空的闭子集A和B使得A∩B=和A∪B=X成立;
(3)X中存在着两个非空的开子集A和B使得A∩B=和A∪B=X成立;
(4)X中存在着一个既开又闭的非空真子集.
证明 条件(l)蕴涵(2):设(1)成立.令A和B是X中的两个非空的隔离子集使得A∪B=X,显然A∩B=,并且这时我们有
因此B是X中的一个闭子集;同理A也是一个X中的一个闭子集.这证明了集合A和B满足条件(2)中的要求&