我们应该了解的⽤户画像

本文探讨了用户画像在互联网公司中的重要性,涉及角色描述、用户动机、Userpersona与Userprofile的区别,以及它们在经营分析、精准营销和个性化推荐中的应用。同时介绍了几种数据分析工具,如百度统计、诸葛io和神策数据,以及如何通过用户画像解决实际问题,如降低销售团队高离职率。
摘要由CSDN通过智能技术生成

当我们谈⽤户画像时,到底在谈什么
对于互联⽹公司来说,企业的增⻓、内容、活动、产品等⼯作基本上都是围绕着“⽤户”来做的,可以说都是在做“⽤户运营”这个⼯作,⽽⽤户画像是⽤户运营⼯作中⾮常重要的⼀环
⽤户画像的主要特征是
1、描述⼀个⽤户画像包括⻆⾊描述和⽤户⽬标
这⾥⻆⾊描述是指如名称、年龄、位置、收⼊、职业等,这类⻆⾊描述主要是为了使⽤户画像更丰富、真实,具象;
重点关注的是⽤户动机,⽤户⽬标是其动机。

    2、可以代表相似的⽤户群体或类型,也可以代表个体
        User persona是抽象的、虚拟的,代表⼀个典型的⽤户群体;
        虽然也可以代表个体,但个体并不是实际独⽴的个⼈,⽽是从实际观察研究中综合⽽来。

    3、须针对具体情境、具体产品的⾏为和⽬标
        User persona研究的是⽤户在具体情境下对产品的使⽤,关注其在⼀定范围内的⾏为、态度、能⼒、动机等。
        即使同⼀个⻆⾊,在不同产品下的动机也是有差异的,⼀般来说不轻易在不同产品间复⽤,需要考虑不同类产品的切⼊场景。

⽤户画像User profile
    Profile是指⽤户信息标签化,通过收集⽤户多维度的信息数据(如⼈⼝统计属性、社会属性、⾏为偏好、消费习惯等),并对其进⾏统计、分析,从⽽抽象出的⽤户信息全貌,相⽐user persona,它更侧重于数据挖掘、标签体系搭建。
    ⽤户画像是各类描述⽤户数据的变量集合,能够准确描述任何⼀个真实⽤户
    这类画像的主要特征为:
        真实性:集合了每个个体的真实信息,如既有⼈⼝统计属性等静态信息,也有⽤户⾏为的动态信息。
        时效性:⽤户动态信息并⾮⼀层不变,可以实时追踪其变化。
        覆盖度⼴:既能监测到⽤户感兴趣的内容,也可以看到其不感兴趣的内容,维度众多,颗粒度粗细均有。

⽤户画像举例
    京东⻝品⽤户画像
    今⽇头条基础⽤户画像
    典型的电商⽤户画像
    其他⽤户画像系统

⽤户画像能为企业带来什么
简单点,就⼀个字
做⼀个好产品的基础
⽇常经营活动的推动
在企业中,⽤户画像的主要应⽤有三个⽅⾯:经营分析、精准营销、个性化推荐与服务
1 经营分析
⽤户画像系统的标签数据通过API进⼊分析系统后,可以丰富分析数据的维度,⽀持进⾏多种业务对象的经营分析。下⾯总结的是⼀些市场、运营、产品⼈员分析时会关注的指标:
1.1 流量分析
1、流量来源
2、流量数量:UV、PV
3、流量质量:浏览深度(UV、PV)、停留时⻓、来源转化、ROI(投资回报率,return on investment)

        1.2 ⽤户分析
            1、⽤户数量:新⽤户数、⽼⽤户数、新/⽼⽤户数量⽐
            2、⽤户质量:新增⽤户数(App启动)、活跃⽤户数(App启动)、⽤户留存(App启动-App启动)、⽤户参与度、沉睡、客单价

        1.3 商品分析
            1、商品动销:GMV、客单价、下单⼈数、取消购买⼈数、退货⼈数、各端复购率、购买频次分布、运营位购买转化
            2、商品品类:⽀付订单情况(次数、⼈数、趋势、复购)、访购情况、申请退货情况、取消订单情况、关注情况
            
        1.4 订单分析
            1、订单指标:总订单量、退款订单量、订单应付⾦额、订单实付⾦额、下单⼈数
            2、转化率指标:新增订单/访问UV、有效订单/访问UV

        1.5 渠道分析
            1、⽤户活跃
                (1)活跃⽤户:UV、PV
                (2)新增⽤户:注册量、注册同环⽐

            2、⽤户质量
                (1)留存:次⽇/7⽇/30⽇留存率

            3、渠道收⼊
                (1)订单:订单量、⽇均订单量、订单同环⽐
                (2)营收:付费⾦额、⽇均付费⾦额、⾦额同环⽐
                (3)⽤户:⼈均订单量、⼈均订单⾦额

        1.6 产品分析
            1、搜索功能:搜索⼈数/次数、搜索功能渗透率、搜索关键词
            2、关键路径漏⽃等产品功能设计分析

    2精准营销
        2.1 短信/邮件/push营销
            ⽇常⽣活中我们经常会从许多渠道接收到营销来的信息。⼀条关于红包到账的短信消息推送可能会促使⽤户打开已经很久没访问的App,⼀条关于⼼愿单⾥⾯图书降价的邮件消息推送可能会刺激⽤户打开推送链接直接下单购买。具体有哪些类型的营销⽅式呢?⼤致可以分为以下4类:
                1、基于⾏为营销:产品浏览、加⼊购物⻋、⻔店扫码、订单取消、订单退货等
                2、基于位置营销:周边⻔店、周边活动、常去区域等
                3、基于节⽇营销:⽣⽇、春节、双⼗⼀、双⼗⼆、圣诞等
                4、基于会员营销:欢迎⼊会、卡券提醒、积分变更、等级变化、会员礼遇等

        2.2 客服话术
            当我们在向某平台的客服部⻔投诉、咨询或反馈意⻅时,客服⼈员可以准确的说出我们在平台的购买情况,上⼀次咨询问题的处理结果等信息,针对性的提出解决⽅法,对于⾼价值⽤户提供VIP客服通道等专项服务。

    3 个性化推荐与服务
        应⽤的运营者,可以通过个推⽤户画像中的性别、年龄段、兴趣爱好、浏览购买⾏为等标签,给⽤户推荐不同的内容。⽐如:
            今⽇头条上的个性化⽂章内容推荐
            抖⾳上基于⽤户画像做的个性化视频内容推荐
            淘宝上基于⽤户浏览⾏为等画像数据做的个性化商品推荐

如何搭建⽤户画像
⽬前国内市⾯上有很多专⻔针对在线⽤户⾏为数据分析的⼯具
百度统计
百度统计是百度推出的⼀款免费的专业⽹站流量分析⼯具,能够告诉企业访客是如何找到并浏览⽤户的⽹站,在⽹站上做了些什么,有了这些信息,可以帮助企业改善访客在产品⽹站上的使⽤体验,不断提升⽹站的投资回报率。

    诸葛io
        诸葛io是⼀款基于⽤户全⽣命周期的数据分析⼯具。以⽤户跟踪技术和简单易⽤的集成开发⽅法,帮助移动应⽤的运营者们挖掘⽤户的真实⾏为与属性。可以将其⽤于iOS、Android应⽤及⽹站。

    神策数据
        神策数据针对互联⽹企业提供⼤数据分析产品和解决⽅案,以及针对传统企业提供⼤数据相关咨询,是专业的⼤数据分析平台服务提供商,致⼒于帮助客户实现数据驱动。公司围绕⽤户级⼤数据分析和管理需求,推出神策分析、神策智能运营、神策智能推荐、神策⽤户画像、神策客景等产品

    GrowingIO
        GrowingIO是基于⽤户⾏为数据的增⻓平台,为产品、运营、市场、数据团队及管理者等,提供客户数据平台、获客分析、产品分析、智能运营等产品和咨询服务,帮助企业在数据化升级的路上,提升数据驱动能⼒,实现更好的增⻓。⽬前主要专注于零售、电商、⾦融、酒旅航司、教育、内容社区、B2B等⾏业。

分析师应该如何应⽤⽤户画像这个“⼯具”
应⽤案例1
在这里插入图片描述
根据⽤户画像标签,做出合理的决策

应⽤案例2
    问题场景:某互联⽹公司采⽤传统电话销售推⼴告业务,最近新⼊职销售的三个⽉离职率极⾼,⾼到领导⽆法忍受,要求看看销售的⽤户画像,分析下问题来⾃哪⾥?问:这个画像该怎么看……
        分析误区:很多同学看到“⽤户画像”4个字,⾸先想到的可能就是“标签”,好~既然是分析销售的⽤户画像,那就开始扒拉销售的数据,看看能找出多少标签:性别、年龄、学历、⼯作年限、跟进线索数、成交数、业绩情况……emmm,然后呢?销售离职率⾼的问题能解决么?
            正确的破局思路
                对于分析师来说,所有的⼿段都只是⼯具⽽已(包括⽤户画像也是),⽽真正能发挥作⽤的不是⼯具本身,⽽是合理运⽤⼯具的分析思路。
                    ⾸先,构建分析逻辑
                        抛开数据不看,为什么销售会离职?原因可能是多⽅⾯的:
                            公司就是很垃圾,业内⼝碑很差
                            销售管理不佳,员⼯体验太差
                            hr从源头就招错了⼈,滥竽充数
                            本身业绩不好做,销售挣不到钱
                            销售能挣到钱,但是做得太⾟苦
                            ……
                            这些因素可能是相互叠加的。⽐如因为⼴告很难卖,导致管理上倾向于⼈海战术,逼着员⼯加班硬怼;强⾏怼员⼯降低了⼯作体验,增加了员⼯⼼⾥负担,形成恶性循环。

                        逐层分析,剥离宏观因素,聚焦问题所在
                            是不是公司垃圾,业内⼝碑差?
                                这种问题⼀般很好排除,如果真的是公司很烂,离职率⼀定不是最近才⾼的
                                数据佐证:查看近⼀年的销售离职率
                                    数据情况展示
                                    分析:如果真的是公司很烂导致的离职率⾼,那么就是系统性问题了,不是简单的分析⼀下销售⽤户画像就能解决问题的。
                                    
                            是不是销售团队管理不佳?
                                如果排除了整体公司烂这个原因,管理不佳也是相对⽐较容易排除的。因为只要不是公司整体都很烂,那么⼀定是部分销售团队管理很差,部分很好
                                数据佐证:拉取各个团队的离职情况
                                    数据情况展示
                                        这⾥是先看1个⽉的数据情况,看看各团队在⼀个⽉的时间⾥,销售⼈员的离职率是否有明显差异。当然,也可以看连续⼏个⽉的数据。

                                    分析:如果是⼀个或者团队⼏个离职率明显⾼于其他团队,接下来就可以重点分析这⼏个离职率⾼的团队的具体情况。如果是全部团队的离职率都很⾼,那么依然是⼀个系统性问题。
                                    
                            是不是这段时间销售线索质量太差,⼲扰了销售⼯作?
                                对于销售来说,如果销售线索质量太差的话,成单率就会很低,会严重打击销售的⾃信⼼
                                数据佐证:拉取各渠道来源的线索转化率
                                    数据情况展示
                                    分析:这⾥看线索转化率主要是为了打标签,为后续进⼀步分析“是否分配机制有问题”做铺垫
                            .....
                            逐层分析下去,就能够剥离明显的宏观问题,聚焦到销售本身的能⼒上。接下来就可以聚焦销售能⼒的评估与⼈员的基础特征了。

                    聚焦销售能⼒,构建销售⽤户画像
                        ⽤户画像的切⼊点
                            ⽤户画像,不仅仅是“性别、年龄”这些基础特征,⽤户各种⾏为、社交关系等都是重要组成部分
                            在具体分析的时候,特征的选择就尤其重要了
                            对于销售离职问题来说,最有⼒的特征应该是收⼊了

                        数据统计:销售⼊职3个⽉的收⼊情况
                            数据情况展示
                                问题场景是“新⼊职三个⽉离职率”,⽽收⼊⼀般是按⽉结算的,所以这⾥区分三个⽉的情况
                                需要注意的是如果使⽤平均值的话,容易忽略⼀些信息:有些⼈第⼀个⽉没开单就离职了(信⼼被打击),有些⼈可能⼀个⽉收⼊⾼⼀个⽉收⼊低(收⼊不稳定,没信⼼继续做)

                            结合离职率,查看⾼收⼊/低收⼊⼈员的离职率差异
                            分析:如果是⾼收⼊⼈员离职,很可能和“觉得难做,去别的公司做同样的⼯作赚的更多”;但是⼤概率离职⼈员应该是低收⼊⼈员,接下来就可以进⼀步深⼊分析了
                                进⼀步分析低收⼊是如何造成的
                                    有可能是以下原因:
                                        分配的线索不够多(管理问题)
                                        分配的线索⾜够,没做完(执⾏问题)
                                        分配的线索⾜够,做完了,没转化(技巧问题)
                                        分配的线索⾜够,做完了,有转化,单⼦太⼩(还是管理问题)

                                    矩阵分析法,区分情况
                                        如果简单粗暴的分,是可以把销售未执⾏到位的⾏为(包括技巧问题和⽅法问题)归纳为:销售素质不⾏。但是这样可能丧失内部流程优化的机会,⽽且会让真正有素质问题的群体更⼤,特征更模糊更难发现规律
                                        根据转化数量和跟进次数两个维度,将所有销售分为4⼤类
                                            结果展示
                                                ⼀般来说,如果线索分配机制本身有问题,⽐如分配不均,好线索太过集中在某些⼈身上,没有按⾏业区分导致有些⼈单⼦⼀直很⼩……这些不能归为销售的问题,并且可通过内部管理机制的优化来改善问题
                        ⽤户画像构建
                            分析到此处,就可以去看销售队伍⾥那些没有执⾏⼒,缺乏技巧的⼈,与有执⾏⼒,愿意做的⼈有什么区别
                            此时就可以拿出⽤户特征进⾏对⽐了,⽐如:
                                简历上可以得到的字段:年龄、性别、地域(是否⽅⾔区)、学历、从业年限、是否有互联⽹销售经验(简历⽂本提取)、是否有特定⾏业销售经验等。
  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值