详解信号的参数估计

目录

一. 估计的评价准则

二. 一致估计

三. 估计均值

3.1 偏差

3.2 方差

四. 估计方差

4.1 均值已知

 4.2 均值未知

五. 估计自相关函数

5.1 无偏自相关函数估计

5.2 有偏自相关函数估计

六. 发展历程

七. 参考书籍


一. 估计的评价准则

假设a是一个广义平稳随机信号x(n)的一个特征量,\hat a代表a的一个估计量。估计的偏差可以反应估计量与真值的接近程度,定义如下:

B=E[a-\hat a]=a-E[\hat a]

理解:

第一个等号:真实值减去估计值的均值,即为估计的偏差

第二个等号:真实值是不变的,所以其均值为自己本身。

直观上,B越小,\hat a对a的估计就越好。理论上当样本数N趋于无穷大时,会逐渐形成无偏估计,如下:

\lim_{N\to \infty}B=a-\lim_{N\to\infty}E[\hat a]=0

无偏估计可直观理解为估计误差为0,根据该定义发现是一种渐近的理解(引入了数学中的极限思想),对信号处理非常有用

估计的方差可以表示各次估计值相对估计均值的分散程度。估计的方差定义如下:

var[\hat a]=\sigma^2_{\hat a}=E\lbrace [\hat a-E(\hat a)]^2\rbrace=E[\hat a^2]-[E(\hat a)]^2

理解:

第一个等号:方差的另一种写法

第二个等号:方差与均值的关系

第三个等号:均值的线性 性质

估计的均方误差可以综合反映估计的特性,定义如下:

E[\tilde a^2]=E[(\hat a-a)^2]

这个是实际做实验时,最常用的一个量,来综合衡量估计算法的好坏,比如网络安全领域的MMSE估计,等等。

如果均方误差满足如下条件,则称其为一致估计,如下:

  1. 样本数N\to \infty
  2. \lim_{N\to\infty}E[\tilde a^2]=0

性质1考虑样本无限制下的渐近性质

性质2代表均方误差需要接近于0

二. 一致估计

本小节我们来证明一个很有用的性质。

性质:给定一致估计,证明偏差和方差都趋于零。

证明:

给定均方误差化简如下:

第一个等号:均方误差的概念

第二个等号:均值的性质

第三,四个等号:佩服

第四个等号:偏差和方差的概念

由条件可得,一致估计的均方误差为0,也就是可得:

E[\tilde a^2]=0

带入上面的式子化简,所以可得:

B^2+\sigma_{\hat a}^2=0

两个平方和为0,只能是都为0,所以最终可得偏差和方差均为0。

证明完毕。

备注说明一个概念叫有效估计,如下:

利用\hat a代表某算法的估计值,其他算法的估计值表示如下:

\hat a_1,\hat a_2,\cdots,\hat a_k,\cdots

如果以下不等式恒成立:

E(\hat a-a)^2\leq E(\hat a_k-a)^2

则称该估计为有效估计。

有效估计需要保证该算法比其他算法的误差都要小。

三. 估计均值

利用N代表观察次数,则平稳信号序列x(n)的观察样本如下:

x_0,x_1,\cdots,x_{N-1}

由此可计算均值的估计:

\hat m_x=\frac{1}{N}\sum_{i=0}^{N-1}x_i

相加除以N,这就是普通的平均值计算公式。

3.1 偏差

首先可得:

E[\hat m_x]=E(\frac{1}{N}\sum_{i=0}^{N-1}x_i)=\frac{1}{N}\sum_{i=0}^{N-1}E[x_i]=m_x

由此可计算偏差:

B=m_x-E[\hat m_x]=0

所以此方式是一种无偏估计。

3.2 方差

根据定义可得:

E(\hat m_x^2)=E[(\frac{1}{N}\sum_{i=0}^{N-1}x_i)(\frac{1}{N}\sum_{j=0}^{N-1}x_j)]=\frac{1}{N^2}\sum_{j=0}^{N-1}\sum_{i=0}^{N-1}E[x_ix_j]

(1)当x_ix_j互不相关时,有:

E[x_ix_j]=E[x_i]E[x_j]=m_x^2

代入原式子进行化简可得:

所以该估计的方差为:

\sigma_{m_x}^2=E[\hat m_x^2]-m_x^2=\frac{1}{N}E[x_i^2]-\frac{1}{N}m_x^2=\frac{1}{N}\sigma_x^2

可得如下极限:

\lim_{N\to\infty}\sigma_{m_x}^2=0

所以该估计为无偏一致估计。 

(2)当x_ix_j相关时,有:

\sigma_{m_x}^2=E\lbrace [\hat m_x-E(\hat m_x)]^2\rbrace

进一步化简可得:
 

当i和j相差m时,可得:

E[(x-m_x)(x_j-m_x)]=cov(m)

由于在N个数据中,相距m点的数据样本有N-m对,所以可得:

 当信号数据存在相关性时,估计值的方差与协方差相关,不是一致估计,当然改变N值可以改善估计方差。

四. 估计方差

4.1 均值已知

当信号均值m_x已知,方差估计可计算得:

\hat \sigma_x^2=\frac{1}{N}\sum_{i=0}^{N-1}(x_i-m_x)^2

证明此式子为无偏一致估计。

解:

(1)首先验证偏差:

(2)接着验证一致性: 

所以,估计的方差计算为:

 4.2 均值未知

当估计的均值未知时,m_x用估值\hat m_x代替,方差可估计如下:

\hat \sigma_x^2=\frac{1}{N}\sum_{i=0}^{N-1}(x_i-\hat m_x)^2

   (1) 证明该偏差为有偏估计

(2)修改原式子,形成无偏估计

解:

(1)

很明显此为有偏估计。

(2)无偏估计的形式如下:

\hat \sigma_x^{'2}=\frac{1}{N-1}\sum_{i=0}^{N-1}(x_i-\hat m_x^2)^2

以下证明此式子为无偏估计:

显然可得:

\hat \sigma_x^{'2}=\frac{N}{N-1}\hat \sigma_x^2

对上式子两边求均值,可得:

E(\hat \sigma_x^{'2})=\frac{N}{N-1}E(\hat \sigma_x^2)=\sigma_x^2

所以B=0,此为无偏估计。 

五. 估计自相关函数

5.1 无偏自相关函数估计

估计公式为:

\hat r_{xx}(m)=\frac{1}{N-|m|}\sum_{n=0}^{N-|m|-1}x(n)x(n+m)

首先可计算:

E[\hat r_{xx}(m)]=\frac{1}{N-|m|}\sum_{n=0}^{N-|m|-1}E[x(n)x(n+m)]=r_{xx}(m)

由此可计算偏差为:

B=r_{xx}(m)-E[\hat r_{xx}(m)]=0

所以此估计为无偏估计。

估计方差的计算较复杂,可以近似可得:

当N满足如下时,方差趋于0:

N>>m,\quad N\to\infty

5.2 有偏自相关函数估计

估计公式如下:

\hat r_{xx}(m)=\frac{1}{N}\sum_{n=0}^{N-|m|-1}x(n)x(n+m)

首先可计算:

所以估计的偏差为:

B=r_{xx}(m)-E[\hat r_{xx}(m)]=\frac{|m|}{N}r_{xx}(m)

接着可计算:

若x(n)是零均值的实高斯信号,估计的方差为:

 显然可得如下极限:

 所以对于固定的m,\hat r_{xx}(m)r_{xx}(m)的一致估计。

有偏自相关函数估计式求傅氏变换:

为了利用FFT计算线性卷积,可以将x(n)扩展到2N-1点的序列,如下:

 令l=n+m,可得:

 上式子中|X_{2N}(e^{j\omega})|^2代表有限长信号的能量谱,除以N后代表功率谱。

六. 发展历程

1930s 二战时期 :初创阶段

1940s-1950s:大发展时期 (1943/D.O.North, 1942/1949/N.Wiener, 1944/S.O.Rice,  1949/P.M.Woodward)

1950s-1960s:理论成熟时期(经典的统计信号处理理论) (D.Middleton-Bayes风险理论、R.E.Kalman-滤波理论、P.J.Huber-Robust统计学、 J.P.Burg-最大熵谱估计、Capon谱估计) 特征:广义平稳、高斯分布、线性问题/处理

1970s-现代统计信号处理阶段(鲁棒检测、非参量检测等) 特征:非平稳、非高斯、非线性问题/处理

发展现状:针对三非(非平稳、非高斯、非线性)问题,先后发展出了相应的理论与方法。

非平稳:各种时频分析理论与方法(小波分析、分数阶傅氏变换)、循环平稳理论与方法;

非高斯:高阶统计分析理论与方法(高阶累积量、高阶谱);

非线性:EKF、UKF、PF等。

七. 参考书籍

1.羊彦,景占荣,高田. 信号检测与估计. 西北工业大学出版社,2014

2. 段凤增. 信号检测与估计. 哈尔滨工业大学出版社,2002

3. 李道本. 信号的统计检测与估计理论. 科学出版社,2004

4. 叶中付. 统计信号处理. 中国科学技术大学出版社,2009

5. 史蒂文 M 凯. 统计信号处理基础—估计与检测理论. 电子工业出版社,2003

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
信号调制方式识别与参数估计装置是一种能够对信号进行调制方式识别和参数估计的设备。该装置可以显示调制方式识别和参数估计的结果,并输出解调信号供示波器观测波形。装置与测量仪器组成的系统框图如图1所示。[1] 在识别信号的调制方式和参数估计方面,装置可以采用多种方法。其中一种方法是基于小波变换的码元速率估计方法,通过信号的功率谱、非线性变换或小波变换来实现对信号码元速率的估计,从而准确地将数字通信信号和模拟通信信号分离开。[2] 另外,装置还可以采用基于瞬时特征的调制识别方法,通过提取信号的幅度谱峰值、绝对幅度标准差、频率均值、递归频率均值等特征参数来进行调制方式的识别。同时,基于高阶累积量和熵值联合特征的调制识别方法也可以用于提高识别准确性。这种方法利用高阶累积量作为信号分类的特征,并选取合适的熵值特征来识别高阶累积量特征无法区分的信号。[2] 此外,装置还可以采用基于支持向量机的调制识别方法。支持向量机是一种常用的分类器,它可以处理有限样本时具有较好的分类性能和泛化能力,适用于处理非线性和高维模式识别等问题。为了提高支持向量机的性能,可以使用改进粒子群算法来优化支持向量机的参数。[2] 综上所述,信号调制方式识别与参数估计装置可以通过多种方法来实现对信号的调制方式识别和参数估计,包括基于小波变换的码元速率估计方法、基于瞬时特征的调制识别方法、基于高阶累积量和熵值联合特征的调制识别方法以及基于支持向量机的调制识别方法。[1][2]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值