【图论】—— 二分图


如果一张无向图的 N 个结点 \small (N\geqslant 2) 可以分成 A,B 两个非空集合,其中 \small A \cap B=\oslash,并且在同一集合内的点之间都没有边相连,那么称这张无向图为一张二分图。A.B分别称为二分图的左部和右部。


二分图的判定

定理:

一张图是二分图,当且仅当图中不存在奇数环(长度是奇数的环)

染色法判二分图

根据上述的定理,我们可以用染色法进行二分图判定。

大致思想为:尝试用黑白两种颜色标记图中的节点,当一个节点被标记后,它的所有相邻节点应被标记为与它相反的颜色。若标记过程产生冲突,则说明图中存在奇环。

二分图一般基于深度优先遍历,时间复杂度为 \small O(m + n)

代码实现

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 100010, M = N * 2;

int n, m;
int h[N], ne[M], e[M], idx;
int color[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool dfs(int u,int c)
{
    color[u] = c;

    for(int i = h[u];i != -1;i = ne[i])
    {
        int j = e[i];
        if(!color[j]) 
        {
            if(!dfs(j,3 - c)) return false;
        }
        else if(color[j] == c) return false;
    }

    return true;
}

int main()
{
    cin >> n >> m;
    
    memset(h, -1, sizeof h);
    
    while(m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }
    
    bool flag = true;
    for(int i = 1; i <= n; i ++ )
        if(!color[i])
        {
            if(!dfs(i, 1))
            {
                flag = false;
                break;
            }
        }
    
    if(flag) puts("Yes");
    else puts("No");
    
    return 0;
}

 二分图最大匹配

“任意两条边都没有公共端点”的边的集合被称为图的一组匹配

在二分图中,包含边数最多的一组匹配被称为二分图的最大匹配

对于任意的一组匹配 S(S 是一个边集),属于 S 的边被称为“匹配边”,不属于 S 的边称为“非匹配边”。匹配边的端点称为“匹配点”,其他节点被称为“非匹配点”。

如果二分图中存在一条连接两个非匹配点的路径 \small path ,使得匹配边和非匹配边在\small path 上交替出现,那么称 \small path 是匹配 S 的增广路,也称交错路

增广路显然具有以下性质:

  1. 长度 \small len 是奇数
  2. 路径上第 \small 1,2\cdots len 条边是非匹配边,第 \small 2,4\cdots len -1 条边是匹配边

正因为以上性质,我们把路径上所有边的状态取反,原来的匹配边变成非匹配边,原来的非匹配边变成匹配边,那么得到的新的边集 \small s^, 仍然是一组匹配,且匹配的边数增加了 1。进一步得到推论:

二分图的一组匹配 S 是最大匹配,当前结点图中不存在 S 的增广路。


匈牙利算法(增广路算法)

 匈牙利算法,又称增广路算法,用于计算二分图最大匹配。它的主要过程为:

  1. 设 \small S=\varnothing,即所有的边都是非匹配边
  2. 寻找增广路 \small path ,把路径上的所有边的匹配状态取反,得到一个更大的匹配 \small s^, 
  3. 重复第二步,直到图中不存在增广路

匈牙利算法的正确性基于贪心策略,它的一个重要特点是:当一个节点成为匹配点后,至多因为找到增广路二更换匹配对象,但是绝不会再变回非匹配点

对于每个左部节点,寻找增广路至多遍历整个二分图一次。因此,该算法的时间复杂度是 \small O(mn)

算法过程如下图演示:

最初的连接方式
第一次成功匹配
第二次成功匹配

 

第三次“调整”匹配

 

最后一次匹配

匈牙利代码实现 

 

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], ne[M], e[M], idx;
int match[N];  // 右部的点所对应的匹配
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool find(int x)
{
    for(int i = h[x]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!st[j])
        {
            st[j] = true;
            if(match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }
    return false;
}

int main()
{
    cin >> n1 >> n2 >> m;
    memset(h, -1, sizeof h);
    
    while(m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }
    
    int res = 0;
    for(int i = 1; i <= n1; i ++ )
    {
        memset(st, false, sizeof st);
        if(find(i)) res ++ ;
    }
    
    cout << res << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玄澈_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值