「HDU 2865」Birthday Toy

传送门


problem

n n n 个小球组成正 n n n 边形,其中相邻的两个小球用等长的木棍相连。正 n n n 边形中间有一个大球,这个大球与 n n n 个小球分别用木棍相连。若用 k k k 种颜色对这 n + 1 n+1 n+1 个球染色,且一个木棍相连的两个点不能染成同一种颜色,问方案数。

两种染色方案相同,当且仅当其中一种可以经过若干次旋转变成另一种。

数据范围: 3 ≤ n ≤ 1 0 9 3\le n\le10^9 3n109 4 ≤ k ≤ 1 0 9 4\le k\le10^9 4k109,且至少有 1000 1000 1000 组数据。


solution

首先,由于有限制,不能直接用 Polya 定理,我们考虑 Burnside 引理。

显然,给大圆随便涂一个颜色,算一下用剩下的 k − 1 k-1 k1 种颜色去染 n n n 个小圆的方案数,再乘 k k k 便是答案。

注:为了方便,以下的 k k k 代表的是 k − 1 k-1 k1

对于第 i i i 个置换,它有 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i) 个循环,由于每个循环的涂色必须相同,可以看成一个点,所以我们只需求对环上 gcd ⁡ ( n , i ) \gcd(n,i) gcd(n,i) 个点染色,保证相邻两个点涂色不同的方案数。

f i f_i fi 表示 i i i 个点组成的环的涂色方案,那么:

f i = ( k − 1 ) f i − 2 + ( k − 2 ) f i − 1 f_i=(k-1)f_{i-2}+(k-2)f_{i-1} fi=(k1)fi2+(k2)fi1

具体就是,假设 1 1 1 i − 1 i-1 i1 颜色不同,贡献是 ( k − 2 ) f i − 1 (k-2)f_{i-1} (k2)fi1;如果颜色相同,贡献是 ( k − 1 ) f i − 2 (k-1)f_{i-2} (k1)fi2

那么这个显然是可以用矩阵快速幂优化的东西。

然后还有个和「POJ 2154」Color 一样的优化,即用 φ \varphi φ 优化。

时间复杂度应该是 O ( n log ⁡ n ) O(\sqrt n \log n) O(n logn) 左右的。


code

#include<bits/stdc++.h>
using namespace std;
const int N=5e4+5,P=1e9+7;
int n,k;
int add(int x,int y)  {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y)  {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y)  {return 1ll*x*y%P;}
int power(int a,int b){
	int ans=1;
	for(;b;b>>=1,a=mul(a,a))  if(b&1)  ans=mul(ans,a);
	return ans;
}
struct matrix{
	int m[2][2];
	matrix(int t=0)  {m[0][0]=m[1][1]=t,m[0][1]=m[1][0]=0;}
	friend matrix operator*(const matrix &A,const matrix &B){
		matrix C(0);
		C.m[0][0]=add(mul(A.m[0][0],B.m[0][0]),mul(A.m[0][1],B.m[1][0]));
		C.m[0][1]=add(mul(A.m[0][0],B.m[0][1]),mul(A.m[0][1],B.m[1][1]));
		C.m[1][0]=add(mul(A.m[1][0],B.m[0][0]),mul(A.m[1][1],B.m[1][0]));
		C.m[1][1]=add(mul(A.m[1][0],B.m[0][1]),mul(A.m[1][1],B.m[1][1]));
		return C;
	}
	friend matrix operator^(matrix A,int b){
		matrix ans(1);
		for(;b;b>>=1,A=A*A)  if(b&1)  ans=ans*A;
		return ans;
	}
}A,B;
void init(){
	A.m[0][0]=k-2,A.m[0][1]=k-1,A.m[1][0]=1,A.m[1][1]=0;
	B.m[0][0]=mul(k,k-1),B.m[0][1]=0;
}
int sum,prime[N],mark[N];
void linear_sieves(){
	for(int i=2;i<N;++i){
		if(!mark[i])  prime[++sum]=i;
		for(int j=1;j<=sum&&i*prime[j]<N;++j){
			mark[i*prime[j]]=1;
			if(i%prime[j]==0)  break;
		}
	}
}
int solve(int x){
	if(x==1)  return 0;
	if(x==2)  return mul(k,k-1);
	return ((A^(x-2))*B).m[0][0];
}
int phi(int n){
	int ans=n;
	for(int i=1;prime[i]*prime[i]<=n;++i){
		if(n%prime[i]==0){
			ans=ans/prime[i]*(prime[i]-1);
			while(n%prime[i]==0)  n/=prime[i];
		}
	}
	if(n!=1)  ans=ans/n*(n-1);
	return ans;
}
int main(){
	linear_sieves();
	while(~scanf("%d%d",&n,&k)){
		int ans=0;--k,init();
		for(int i=1;i*i<=n;++i){
			if(n%i==0){
				ans=add(ans,mul(solve(i),phi(n/i)));
				if(i*i!=n)  ans=add(ans,mul(solve(n/i),phi(i)));
			}
		}
		ans=mul(ans,mul(k+1,power(n,P-2)));
		printf("%d\n",ans);
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值