【题目】
题目描述:
给定一个多项式 ( a x + b y ) k (ax + by)^k (ax+by)k,请求出多项式展开后 x n y m x^ny^m xnym 项的系数。
输入格式:
共一行,包含 5 5 5 个整数,分别为 a a a, b b b, k k k, n n n, m m m,每两个整数之间用一个空格隔开。
输出格式:
输出共 1 1 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10007 10007 10007 取模后的结果。
样例数据:
输入
1 1 3 1 2
输出
3
备注:
【数据范围】
对于
30
%
30\%
30% 的数据,有
0
≤
k
≤
10
0≤k≤10
0≤k≤10;
对于
50
%
50\%
50% 的数据,有
a
=
1
,
b
=
1
a=1,b=1
a=1,b=1;
对于
100
%
100\%
100% 的数据,有
0
≤
k
≤
1
,
000
0≤k≤1,000
0≤k≤1,000,
0
≤
n
,
m
≤
k
0≤n,m≤k
0≤n,m≤k,且
n
+
m
=
k
n+m=k
n+m=k,
0
≤
a
,
b
≤
1
,
000
,
000
0≤a,b≤1,000,000
0≤a,b≤1,000,000。
【分析】
根据二项式定理可知 ( a x + b y ) k = ∑ i = 0 k C k i ( a x ) i ( b y ) k − i = ∑ i = 0 k ( C k i a i b k − i ) x i y k − i (ax+by)^k=\sum_{i=0}^kC_{k}^i(ax)^i(by)^{k-i}=\sum_{i=0}^k(C_{k}^ia^ib^{k-i})x^iy^{k-i} (ax+by)k=i=0∑kCki(ax)i(by)k−i=i=0∑k(Ckiaibk−i)xiyk−i
那么显然, x n y m x^ny^m xnym 项的系数为 C k n a n b m C_{k}^na^nb^m Cknanbm。
所以只需处理出组合数就可以了。
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
#define p 10007
using namespace std;
int Power(int a,int b)
{
int ans=1;
for(;b;b>>=1,a=1ll*a*a%p)if(b&1)ans=1ll*ans*a%p;
return ans;
}
int fac(int x)
{
int i,ans=1;
for(i=2;i<=x;++i)ans=ans*i%p;
return ans;
}
int inv(int x)
{
return Power(fac(x),p-2);
}
int main()
{
int a,b,k,n,m;
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
printf("%d\n",fac(k)*inv(n)%p*inv(k-n)%p*Power(a,n)%p*Power(b,m)%p);
return 0;
}