problem
我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。
考虑一个含有 n n n 个互异正整数的序列 c 1 , c 2 , . . . , c n c_1,c_2,...,c_n c1,c2,...,cn。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合 { c 1 , c 2 , . . . , c n } \{c_1,c_2,...,c_n\} {c1,c2,...,cn} 中,我们的小朋友就会将其称作神犇。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。
给出一个整数 m m m,请对于任意的 s ( 1 ≤ s ≤ m ) s(1\le s\le m) s(1≤s≤m),计算出权值为 s s s 的神犇二叉树的个数。
我们只需要知道答案关于 998244353 998244353 998244353( 7 × 17 × 2 23 + 1 7\times17\times2^{23}+1 7×17×223+1,一个质数)取模后的值。
数据范围: 1 ≤ n ≤ 1 0 5 1\le n\le10^5 1≤n≤105, 1 ≤ m ≤ 1 0 5 1\le m\le10^5 1≤m≤105, 1 ≤ c i ≤ 1 0 5 1\le c_i\le10^5 1≤ci≤105。
solution
先写出一个点的 OGF:
G ( x ) = ∑ i = 0 n [ i ∈ c ] x i G(x)=\sum_{i=0}^n[i\in c]x^i G(x)=i=0∑n[i∈c]xi
c c c 就是题目中所说的集合。
令 F ( x ) F(x) F(x) 为树的 OGF,由于一棵二叉树可以看做是由左右子树两棵二叉树(可以为空)和一个点拼接而成,所以:
F ( x ) = G ( x ) F 2 ( x ) + 1 F(x)=G(x)F^2(x)+1 F(x)=G(x)F2(x)+1
+ 1 +1 +1 是因为空树。
解个方程,得到:
F ( x ) = 1 ± 1 − 4 G ( x ) 2 G ( x ) F(x)=\frac{1±\sqrt{1-4G(x)}}{2G(x)} F(x)=2G(x)1±1−4G(x)
然后再分子有理化,即:
F ( x ) = 2 1 ± 1 − 4 G ( x ) F(x)=\frac{2}{1±\sqrt{1-4G(x)}} F(x)=1±1−4G(x)2
发现在取 − - − 时,分母多项式的常数项为 0 0 0,不能求逆,因此必须舍去。
所以我们用多项式开根,求逆即可解决这道题。
code
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define N 500005
#define P 998244353
using namespace std;
typedef vector<int> poly;
const int g=3,inv2=499122177;
int n,m,pos[N];
int add(int x,int y) {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y) {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y) {return 1ll*x*y%P;}
int power(int a,int b,int ans=1){
for(;b;b>>=1,a=mul(a,a))
if(b&1) ans=mul(ans,a);
return ans;
}
int *w[24],C=23;
void prework(){
for(int i=1;i<=C;++i)
w[i]=new int[1<<(i-1)];
int now=power(g,(P-1)/(1<<C));
w[C][0]=1;
for(int i=1;i<(1<<(C-1));++i) w[C][i]=mul(w[C][i-1],now);
for(int i=C-1;i;--i)
for(int j=0;j<(1<<(i-1));++j)
w[i][j]=w[i+1][j<<1];
}
void init(int lim){
for(int i=0;i<lim;++i)
pos[i]=(pos[i>>1]>>1)|((i&1)*(lim>>1));
}
void NTT(poly &f,int lim,int type){
for(int i=0;i<lim;++i)
if(pos[i]>i) swap(f[i],f[pos[i]]);
for(int mid=1,l=1;mid<lim;mid<<=1,++l){
for(int i=0;i<lim;i+=(mid<<1)){
for(int j=0;j<mid;++j){
int p0=f[i+j],p1=mul(f[i+j+mid],w[l][j]);
f[i+j]=add(p0,p1),f[i+j+mid]=dec(p0,p1);
}
}
}
if(type==-1&&(reverse(f.begin()+1,f.begin()+lim),1)){
int inv=power(lim,P-2);
for(int i=0;i<lim;++i) f[i]=mul(f[i],inv);
}
}
poly operator*(poly A,poly B){
int len=A.size()+B.size()-2,lim=1;
while(lim<=len) lim<<=1;init(lim);
A.resize(lim),NTT(A,lim,1);
B.resize(lim),NTT(B,lim,1);
for(int i=0;i<lim;++i) A[i]=mul(A[i],B[i]);
NTT(A,lim,-1),A.resize(len+1);
return A;
}
poly Inv(poly A,int len){
poly C,B(1,power(A[0],P-2));
for(int lim=4;lim<(len<<2);lim<<=1){
init(lim);
C=A,C.resize(lim>>1);
C.resize(lim),NTT(C,lim,1);
B.resize(lim),NTT(B,lim,1);
for(int i=0;i<lim;++i) B[i]=mul(B[i],dec(2,mul(B[i],C[i])));
NTT(B,lim,-1),B.resize(lim>>1);
}
B.resize(len);return B;
}
poly Sqrt(poly A,int len){
poly B(1,1),C,D;
for(int lim=4;lim<(len<<2);lim<<=1){
C=A,C.resize(lim>>1);
init(lim),D=Inv(B,lim>>1);
C.resize(lim),NTT(C,lim,1);
D.resize(lim),NTT(D,lim,1);
for(int i=0;i<lim;++i) C[i]=mul(C[i],D[i]);
NTT(C,lim,-1),B.resize(lim>>1);
for(int i=0;i<(lim>>1);++i) B[i]=mul(add(B[i],C[i]),inv2);
}
B.resize(len);return B;
}
int main(){
poly A;
scanf("%d%d",&n,&m),prework();
A.resize(1e5+1);
for(int i=1,x;i<=n;++i) scanf("%d",&x),A[x]=P-4;
A[0]++,A=Sqrt(A,m+1),A[0]++,A=Inv(A,m+1);
for(int i=1;i<=m;++i) printf("%d\n",mul(2,A[i]));
return 0;
}