【Codeforces 438E】The Child and Binary Tree

传送门


problem

我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。

考虑一个含有 n n n 个互异正整数的序列 c 1 , c 2 , . . . , c n c_1,c_2,...,c_n c1,c2,...,cn。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合 { c 1 , c 2 , . . . , c n } \{c_1,c_2,...,c_n\} {c1,c2,...,cn} 中,我们的小朋友就会将其称作神犇。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。

给出一个整数 m m m,请对于任意的 s ( 1 ≤ s ≤ m ) s(1\le s\le m) s(1sm),计算出权值为 s s s 的神犇二叉树的个数。

我们只需要知道答案关于 998244353 998244353 998244353 7 × 17 × 2 23 + 1 7\times17\times2^{23}+1 7×17×223+1,一个质数)取模后的值。

数据范围: 1 ≤ n ≤ 1 0 5 1\le n\le10^5 1n105 1 ≤ m ≤ 1 0 5 1\le m\le10^5 1m105 1 ≤ c i ≤ 1 0 5 1\le c_i\le10^5 1ci105


solution

先写出一个点的 OGF

G ( x ) = ∑ i = 0 n [ i ∈ c ] x i G(x)=\sum_{i=0}^n[i\in c]x^i G(x)=i=0n[ic]xi

c c c 就是题目中所说的集合。

F ( x ) F(x) F(x) 为树的 OGF,由于一棵二叉树可以看做是由左右子树两棵二叉树(可以为空)和一个点拼接而成,所以:

F ( x ) = G ( x ) F 2 ( x ) + 1 F(x)=G(x)F^2(x)+1 F(x)=G(x)F2(x)+1

+ 1 +1 +1 是因为空树。

解个方程,得到:

F ( x ) = 1 ± 1 − 4 G ( x ) 2 G ( x ) F(x)=\frac{1±\sqrt{1-4G(x)}}{2G(x)} F(x)=2G(x)1±14G(x)

然后再分子有理化,即:

F ( x ) = 2 1 ± 1 − 4 G ( x ) F(x)=\frac{2}{1±\sqrt{1-4G(x)}} F(x)=1±14G(x) 2

发现在取 − - 时,分母多项式的常数项为 0 0 0,不能求逆,因此必须舍去。

所以我们用多项式开根,求逆即可解决这道题。


code

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define N 500005
#define P 998244353
using namespace std;
typedef vector<int> poly;
const int g=3,inv2=499122177;
int n,m,pos[N];
int add(int x,int y)  {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y)  {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y)  {return 1ll*x*y%P;}
int power(int a,int b,int ans=1){
	for(;b;b>>=1,a=mul(a,a))
		if(b&1)  ans=mul(ans,a);
	return ans;
}
int *w[24],C=23;
void prework(){
	for(int i=1;i<=C;++i)
		w[i]=new int[1<<(i-1)];
	int now=power(g,(P-1)/(1<<C));
	w[C][0]=1;
	for(int i=1;i<(1<<(C-1));++i)  w[C][i]=mul(w[C][i-1],now);
	for(int i=C-1;i;--i)
		for(int j=0;j<(1<<(i-1));++j)
			w[i][j]=w[i+1][j<<1];
}
void init(int lim){
	for(int i=0;i<lim;++i)
		pos[i]=(pos[i>>1]>>1)|((i&1)*(lim>>1));
}
void NTT(poly &f,int lim,int type){
	for(int i=0;i<lim;++i)
		if(pos[i]>i)  swap(f[i],f[pos[i]]);
	for(int mid=1,l=1;mid<lim;mid<<=1,++l){
		for(int i=0;i<lim;i+=(mid<<1)){
			for(int j=0;j<mid;++j){
				int p0=f[i+j],p1=mul(f[i+j+mid],w[l][j]);
				f[i+j]=add(p0,p1),f[i+j+mid]=dec(p0,p1);
			}
		}
	}
	if(type==-1&&(reverse(f.begin()+1,f.begin()+lim),1)){
		int inv=power(lim,P-2);
		for(int i=0;i<lim;++i)  f[i]=mul(f[i],inv);
	}
}
poly operator*(poly A,poly B){
	int len=A.size()+B.size()-2,lim=1;
	while(lim<=len)  lim<<=1;init(lim);
	A.resize(lim),NTT(A,lim,1);
	B.resize(lim),NTT(B,lim,1);
	for(int i=0;i<lim;++i)  A[i]=mul(A[i],B[i]);
	NTT(A,lim,-1),A.resize(len+1);
	return A;
}
poly Inv(poly A,int len){
	poly C,B(1,power(A[0],P-2));
	for(int lim=4;lim<(len<<2);lim<<=1){
		init(lim);
		C=A,C.resize(lim>>1);
		C.resize(lim),NTT(C,lim,1);
		B.resize(lim),NTT(B,lim,1);
		for(int i=0;i<lim;++i)  B[i]=mul(B[i],dec(2,mul(B[i],C[i])));
		NTT(B,lim,-1),B.resize(lim>>1);
	}
	B.resize(len);return B;
}
poly Sqrt(poly A,int len){
	poly B(1,1),C,D;
	for(int lim=4;lim<(len<<2);lim<<=1){
		C=A,C.resize(lim>>1);
		init(lim),D=Inv(B,lim>>1);
		C.resize(lim),NTT(C,lim,1);
		D.resize(lim),NTT(D,lim,1);
		for(int i=0;i<lim;++i)  C[i]=mul(C[i],D[i]);
		NTT(C,lim,-1),B.resize(lim>>1);
		for(int i=0;i<(lim>>1);++i)  B[i]=mul(add(B[i],C[i]),inv2);
	}
	B.resize(len);return B;
}
int main(){
	poly A;
	scanf("%d%d",&n,&m),prework();
	A.resize(1e5+1);
	for(int i=1,x;i<=n;++i)  scanf("%d",&x),A[x]=P-4;
	A[0]++,A=Sqrt(A,m+1),A[0]++,A=Inv(A,m+1);
	for(int i=1;i<=m;++i)  printf("%d\n",mul(2,A[i]));
	return 0;
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值