【BZOJ 3684】大朋友和多叉树

传送门


problem

我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树。

对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇:

  1. 点权为 1 1 1 的结点是叶子结点;
  2. 对于任一点权大于 1 1 1 的结点 u u u u u u 的孩子数目 d e g u deg_u degu 属于集合 D D D,且 u u u 的点权等于这些孩子结点的点权之和。

给出一个整数 n n n,请求出根节点权值为 n n n 的神犇多叉树的个数对 950009857 950009857 950009857 453 × 2 21 + 1 453\times 2^{21}+1 453×221+1,一个质数)取模后的值。

数据范围: 1 ≤ m &lt; n ≤ 1 0 5 1\le m&lt;n\le 10^5 1m<n105 m m m D D D 集合大小), 2 ≤ D i ≤ n 2\le D_i\le n 2Din


solution

D D D 的生成函数是 C ( x ) C(x) C(x),那么有 C ( x ) = ∑ i ∈ D x i C(x)=\sum_{i\in D}x^i C(x)=iDxi

又设树的生成函数为 F ( x ) F(x) F(x),有:

F ( x ) = x + ∑ i ∈ D F i ( x ) F(x)=x+\sum_{i\in D}F^i(x) F(x)=x+iDFi(x)

就相当于是枚举儿子数量 i i i,有 i i i 个儿子就有 F i ( x ) F^i(x) Fi(x) 的贡献,单出来的那个 x x x 是单点成树的情况。

那么,我们现在要求的是 [ x n ] F ( x ) [x^n]F(x) [xn]F(x)(就是 F ( x ) F(x) F(x) x n x^n xn 这一项的系数)。

拉格朗日反演

如果多项式 f f f g g g 满足 g ( f ( x ) ) = x g(f(x))=x g(f(x))=x,那么一定有 f ( g ( x ) ) = x f(g(x))=x f(g(x))=x,这时我们称 f f f g g g 互为复合逆

f f f g g g 互为复合逆,我们有:

[ x n ] f ( x ) = 1 n [ x − 1 ] 1 g n ( x ) [x^n]f(x)=\frac 1 n[x^{-1}]\frac{1}{g^n(x)} [xn]f(x)=n1[x1]gn(x)1


然后回到这道题来。

看一下 C ( x ) C(x) C(x) F ( x ) F(x) F(x) 的式子,容易得到 F ( x ) = x + C ( F ( x ) ) F(x)=x+C(F(x)) F(x)=x+C(F(x)),即 F ( x ) − C ( F ( x ) ) = x F(x)-C(F(x))=x F(x)C(F(x))=x

G ( x ) = x − C ( x ) G(x)=x-C(x) G(x)=xC(x) 的话,发现上式就是 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x,那就可以拉格朗日反演了:

[ x n ] F ( x ) = 1 n [ x − 1 ] 1 G n ( x ) [x^n]F(x)=\frac 1 n[x^{-1}]\frac{1}{G^n(x)} [xn]F(x)=n1[x1]Gn(x)1

看到 [ x − 1 ] [x^{-1}] [x1] x − 1 x^{-1} x1 项的系数?不妨对右边乘一个 x n x^n xn,然后变成:

[ x n ] F ( x ) = 1 n [ x n − 1 ] x n G n ( x ) = 1 n [ x n − 1 ] ( x G ( x ) ) n \begin{aligned} [x^n]F(x)&amp;=\frac1 n[x^{n-1}]\frac {x^n}{G^n(x)}\\ &amp;=\frac1 n[x^{n-1}](\frac {x}{G(x)})^n \end{aligned} [xn]F(x)=n1[xn1]Gn(x)xn=n1[xn1](G(x)x)n

根据 G ( x ) = x − C ( x ) G(x)=x-C(x) G(x)=xC(x),那么 x G ( x ) = 1 1 − ∑ i ∈ D x i − 1 \frac{x}{G(x)}=\frac 1 {1-\sum_{i\in D}x^{i-1}} G(x)x=1iDxi11。剩下的就比较简单了,直接多项式快速幂+求逆就可以了。


code

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define N 1000005
#define P 950009857
using namespace std;
const int g=7;
typedef vector<int> poly;
int n,m,pos[N],inv[N];
int add(int x,int y)  {return x+y>=P?x+y-P:x+y;}
int dec(int x,int y)  {return x-y< 0?x-y+P:x-y;}
int mul(int x,int y)  {return 1ll*x*y%P;}
int power(int a,int b,int ans=1){
	for(;b;b>>=1,a=mul(a,a))
		if(b&1)  ans=mul(ans,a);
	return ans;
}
int C=21,*w[22];
void prework(){
	for(int i=1;i<=C;++i)
		w[i]=new int[1<<(i-1)];
	int now=power(g,(P-1)/(1<<C));
	w[C][0]=1;
	for(int i=1;i<(1<<(C-1));++i)  w[C][i]=mul(w[C][i-1],now);
	for(int i=C-1;i;--i)
		for(int j=0;j<(1<<(i-1));++j)
			w[i][j]=w[i+1][j<<1];
}
void init_inv(){
	inv[0]=inv[1]=1;
	for(int i=2;i<N;++i)  inv[i]=mul(P-P/i,inv[P%i]);
}
void init_pos(int limit){
	for(int i=0;i<limit;++i)  pos[i]=(pos[i>>1]>>1)|((i&1)*(limit>>1));
}
void NTT(poly &f,int limit,int type){
	for(int i=0;i<limit;++i)
		if(pos[i]>i)  swap(f[i],f[pos[i]]);
	for(int mid=1,l=1;mid<limit;mid<<=1,++l){
		for(int i=0;i<limit;i+=(mid<<1)){
			for(int j=0;j<mid;++j){
				int p0=f[i+j],p1=mul(f[i+j+mid],w[l][j]);
				f[i+j]=add(p0,p1),f[i+j+mid]=dec(p0,p1);
			}
		}
	}
	if(type==-1&&(reverse(f.begin()+1,f.begin()+limit),1)){
		int inv=power(limit,P-2);
		for(int i=0;i<limit;++i)  f[i]=mul(f[i],inv);
	}
}
poly operator*(poly A,int B){
	for(int i=0;i<A.size();++i)  A[i]=mul(A[i],B);
	return A;
}
poly operator*(poly A,poly B){
	int lim=1,len=A.size()+B.size()-2;
	while(lim<=len)  lim<<=1;init_pos(lim);
	A.resize(lim),NTT(A,lim,1);
	B.resize(lim),NTT(B,lim,1);
	for(int i=0;i<lim;++i)  A[i]=mul(A[i],B[i]);
	NTT(A,lim,-1),A.resize(len+1);
	return A;
}
poly Inv(poly A,int len){
	poly C,B(1,power(A[0],P-2));
	for(int lim=4;lim<(len<<2);lim<<=1){
		init_pos(lim);
		C=A,C.resize(lim>>1);
		C.resize(lim),NTT(C,lim,1);
		B.resize(lim),NTT(B,lim,1);
		for(int i=0;i<lim;++i)  B[i]=mul(B[i],dec(2,mul(B[i],C[i])));
		NTT(B,lim,-1),B.resize(lim>>1);
	}
	B.resize(len);return B;
}
poly Deriv(poly A){
	for(int i=0;i<A.size()-1;++i)  A[i]=mul(A[i+1],i+1);
	A.pop_back();return A;
}
poly Integ(poly A){
	A.push_back(0);
	for(int i=A.size()-1;i;--i)  A[i]=mul(A[i-1],inv[i]);
	A[0]=0;return A;
}
poly Ln(poly A,int len){
	A=Integ(Deriv(A)*Inv(A,len)),A.resize(len);
	return A;
}
poly Exp(poly A,int len){
	poly B(1,1),C;A.resize(len<<1);
	for(int lim=2;lim<(len<<1);lim<<=1){
		C=Ln(B,lim);
		for(int i=0;i<lim;++i)  C[i]=dec(A[i],C[i]);
		C[0]=add(C[0],1),B=B*C;
		B.resize(lim);
	}
	B.resize(len);return B;
}
poly Power(poly A,int len,int k){
	A=Exp(Ln(A,len)*k,len),A.resize(len);
	return A;
}
poly G;
int main(){
	scanf("%d%d",&n,&m);
	prework(),init_inv();
	G.resize(n);
	for(int i=1,x;i<=m;++i)  scanf("%d",&x),G[x-1]=P-1;
	G[0]++,G=Power(Inv(G,n),n,n);
	printf("%d\n",mul(G[n-1],power(n,P-2)));
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值