Danskin's theorem

Danskin's theorem

From Wikipedia, the free encyclopedia

In convex analysisDanskin's theorem is a theorem which provides information about the derivatives of a function of the form

f(x) = \max_{z \in Z} \phi(x,z).

The theorem has applications in optimization, where it sometimes is used to solve minimax problems.

[edit]Statement

The theorem applies to the following situation. Suppose \phi(x,z) is a continuous function of two arguments,

\phi: {\mathbb R}^n \times Z \rightarrow {\mathbb R}

where Z \subset {\mathbb R}^m is a compact set. Further assume that \phi(x,z) is convex in x for every z \in Z.

Under these conditions, Danskin's theorem provides conclusions regarding the differentiability of the function

f(x) = \max_{z \in Z} \phi(x,z).

To state these results, we define the set of maximizing points Z_0(x) as

Z_0(x) = \left\{ \overline{z} : \phi(x,\overline{z}) = \max_{z \in Z} \phi(x,z)\right\}.

Danskin's theorem then provides the following results.

Convexity
f(x) is  convex.
Directional derivatives
The  directional derivative of  f(x) in the direction  y, denoted  D_y\ f(x), is given by
D_y f(x) = \max_{z \in Z_0(x)} \phi'(x,z;y),
where  \phi'(x,z;y) is the directional derivative of the function  \phi(\cdot,z) at  x in the direction  y.
Derivative
f(x) is  differentiable at  x if  Z_0(x) consists of a single element  \overline{z}. In this case, the  derivative of  f(x) (or the  gradient of  f(x) if  x is a vector) is given by
\frac{\partial f}{\partial x} = \frac{\partial \phi(x,\overline{z})}{\partial x}.
Subdifferential
If  \phi(x,z) is differentiable with respect to  x for all  z \in Z, and if  \partial \phi/\partial x is continuous with respect to  z for all  x, then the subdifferential of  f(x) is given by
\partial f(x) = \mathrm{conv} \left\{ \frac{\partial \phi(x,z)}{\partial x} : z \in Z_0(x) \right\}
where  \mathrm{conv} indicates the  convex hull operation.

[edit]References

  • Bertsekas, Dimitri P. (1999). Nonlinear Programming. Belmont, MA: Athena Scientific. pp. 717. ISBN 1-886529-00-0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值