文章目录
1.例子描述
将一个双向链表,按照奇偶位置进行拆分成两个链表
即:
1.双向链表中偶数位置的结点组成一个链表.
2.双向链表中奇数位置的结点组成一个链表.
3.拆分完成后,双向链表变成了空链表.
2.打印结果
待分割的链表:
head->tail:[1,2,3,4,5,6,7,8,9,10]
---------存储偶数位置结点的链表----------
head->tail:[2,4,6,8,10]
tail-->head:[10,8,6,4,2]
---------存储奇数位置结点的链表----------
head->tail:[1,3,5,7,9]
tail-->head:[9,7,5,3,1]
---------打印被分割的链表(此时成了一个空链表)----
head->tail:[]
3.思路流程图
4.思路设计
1.创建双向链表结点数据结构.
2.创建双向链表数据结构.
2.1.在双向链表中创建添加结点的方法.
2.2.在双向链表中创建打印链表的方法.
3.创建拆分方法.
3.1.定义一个计数器.
3.2.遍历待拆分的双向链表.
3.3.当计数器为偶数时,插入到存储偶数位置结点的链表中.
3.4.当计数器为奇数时,插入到存储奇数位置结点的链表中.
4.处理一些特殊位置的结点.
4.1.存储偶数位置的链表的头结点的前指针未覆盖,则需要置为null
4.2.当待拆分链表的结点个数为偶数时,那么存储奇数位置链表的尾结点的next指针未被覆盖,则需要置为null.
4.3.当待拆分链表的结点个数为奇数时,那么存储偶数位置链表的尾结点的next指针未被覆盖,则需要置为null.
5.代码实现
5.1 定义双向链表结点数据结构
class DoubleDirectionNode {
public int value;//当前的值
public DoubleDirectionNode pre;//前一个结点
public DoubleDirectionNode next;//后一个结点
public DoubleDirectionNode(int value, DoubleDirectionNode pre, DoubleDirectionNode next) {
this.value = value;
this.pre = pre;
this.next = next;
}
}
5.2 定义双向链表数据结构
public class DoubledirectionList {
public DoubleDirectionNode head;//头结点
public DoubleDirectionNode tail;//尾结点
/**
* 添加结点,顺序添加
*
* @param node
*/
public void addNode(DoubleDirectionNode node) {
//1.先将结点pre和next指针置为null
if (node == null) {
return;
}
//2.判断当前链表为null.则将插入的结点置为链表的head和tail结点
if (head == null) {
head = tail = node;
} else {
//3.往尾部插入
//3.1.tail结点的next指向插入的结点
tail.next = node;
//3.2.插入的结点的pre指向前一个结点
node.pre = tail;
//3.3.尾结点指向当前结点
tail = node;
}
}
/**
* 打印链表:从前往后
*/
public void printlnListHeadToTail() {
System.out.print("head->tail:");
DoubleDirectionNode temp = head;
int flag = 0;
System.out.print("[");
while (temp != null) {
if (flag == 0) {
System.out.print(temp.value);
flag = 1;
} else {
System.out.print("," + temp.value);
}
temp = temp.next;
}
System.out.println("]");
}
/**
* 打印链表:从后往前
*/
public void printlnListTailToHead() {
System.out.print("tail-->head:");
DoubleDirectionNode temp = tail;
int flag = 0;
System.out.print("[");
while (temp != null) {
if (flag == 0) {
System.out.print(temp.value);
flag = 1;
} else {
System.out.print("," + temp.value);
}
temp = temp.pre;
}
System.out.println("]");
}
}
5.3 定义拆分双向链表方法
/**
* 拆分双向链表为两个链表(分割规则:按照结点位置奇偶性拆分)
*
* @param doubleList 被分割的链表
* @param splitEvenList 分割后存储偶数位置的链表
* @param splitOddList 分割后存储奇数位置的链表
*/
public static void splitDoubledirectionList(DoubledirectionList doubleList,
DoubledirectionList splitEvenList,
DoubledirectionList splitOddList) {
//1.判断是否为空
if (doubleList == null || splitEvenList == null || splitOddList == null) {
return;
}
//2.计数器
int count = 0;
//3.遍历的链表
while (doubleList.head != null) {
//4.计数器+1
count++;
if (count % 2 == 0) {
//3.1.偶数位置:添加到偶数链表
splitEvenList.addNode(doubleList.head);
} else {
//3.2.奇数位置:添加奇数链表
splitOddList.addNode(doubleList.head);
}
doubleList.head = doubleList.head.next;
}
//5.将链表倒数第二个位置的结点的next指针置为null.
if (count % 2 == 0) {
//表示最后一个是偶数位置结点,那么倒数第二个结点则是奇数结点位置
splitOddList.tail.next = null;
} else {
//最后一个是奇数位置结点,那么倒数第二个结点则是偶数结点位置
splitEvenList.tail.next = null;
}
//4.将存储偶数位置结点的head的pre去掉.
if (splitEvenList.head != null) {
splitEvenList.head.pre = null;
}
}
5.4 调用示例
public static void main(String[] agrs) {
DoubledirectionList doubleList = new DoubledirectionList();
//1.创建一个双向链表,并插入数据:例子是插入1...10
for (int i = 1; i <= 10; i++) {
doubleList.addNode(new DoubleDirectionNode(i, null, null));
}
System.out.println("待分割的链表:");
doubleList.printlnListHeadToTail();
//2.定义存储技术和偶数的链表
DoubledirectionList splitEvenList = new DoubledirectionList();
DoubledirectionList splitOddList = new DoubledirectionList();
//3.调用分割链表
splitDoubledirectionList(doubleList, splitEvenList, splitOddList);
//4.打印分割结果
System.out.println("---------存储偶数位置结点的链表----------");
splitEvenList.printlnListHeadToTail();
splitEvenList.printlnListTailToHead();
System.out.println("---------存储奇数位置结点的链表----------");
splitOddList.printlnListHeadToTail();
splitOddList.printlnListTailToHead();
//5.打印被分割的链表,此时成了一个空链表
System.out.println("---------打印被分割的链表(此时成了一个空链表)----");
doubleList.printlnListHeadToTail();
}
6.总结
6.1 复杂度
时间复杂度:O(N)
控件复杂度:O(1)
6.2 其他思路
1.遍历链表时,也可以取出结点中的值,然后创建新结点,将值赋给此新结点,插入到对应的拆分链表中.
2.优点:虽然这样不需要处理特殊位置的结点
3.缺点:这样又创建了n个结点,空间复杂度为O(N).