图最短路径之Floyed算法

一、背景介绍

弗洛伊德算法(Floyed’s algorithm)是一种用来寻找图中任意两点之间最短路径的算法。它是一种动态规划算法将小规模问题的解存储在内存中,等到大问题的解直接拿来有效利用】,通过比较不同的路径长度来逐步更新并找到最短路径。Floyed算法适用于求解图(有向图和无向图)中任意两端点之间的最短路径问题。

二、算法介绍

  • 初始化一个二维矩阵,称为距离矩阵,用于记录任意两点之间的最短路径长度。
  • 将距离矩阵初始化为图中各边的权重值,如果两点之间没有直接连接,则将距离设置为一个无穷大的值。
  • 对于图中的每个顶点 i,以顶点 i 作为中间节点,遍历所有顶点对 (j, k),尝试通过顶点 i 来更新从顶点 j 到顶点 k 的最短路径长度。如果通过顶点 i 可以获得更短的路径,则更新距离矩阵中对应的路径长度。
    例如,对于距离矩阵中的元素 distance[j][k],更新公式如下:
    distance[j][k] = min(distance[j][k], distance[j][i] + distance[i][k])
  • 重复上述步骤,直到通过所有的顶点作为中间节点时都不能找到更短的路径。
  • 最终,完成上述步骤后,距离矩阵中记录的就是任意两点之间的最短路径长度。

三、要点

  • 需要注意的是,距离矩阵中的值可能会被更新多次,直到达到最短路径长度。
  • 若在距离矩阵中的对角线上存在负数,表示图中存在负权回路,即存在形成一个环,使得环上的边权重总和小于零的情况,此时弗洛伊德算法将无法得出正确结果。
  • 算法的时间复杂度为O(|n|^3),其中|n|是图中顶点的个数。这使得弗洛伊德算法更适用于解决顶点数量较少的问题,即n<200比较合适。

四、实验

#include <bits/stdc++.h>

using namespace std;

const int maxn=310;
int d[maxn][maxn];
int n,m,T,x,y,v;

int main()
{
    scanf("%d%d%d",&n,&m,&T);
    memset(d,0x7f7f7f7f,sizeof(d));
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&x,&y,&v);
        d[x][y]=v;
    }
    //floyed算法
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        for(int k=1;k<=n;k++)
    {
        d[j][k]=min(d[j][k],d[j][i]+d[i][k]);//注意题中所问题的问题,求最短路径中,权值最大的边

    }
    for(int i=1;i<=T;i++)
    {
        scanf("%d%d",&x,&y);
        if(d[x][y]==0x7f7f7f7f)
        {
            cout<<-1<<endl;
        }else{
           cout<<d[x][y]<<endl;
        }
    }

    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
迪杰斯特拉算法是一种求解单源最短路径的常用算法,适用于边权非负的有向无向图。下面是使用 C 语言实现的迪杰斯特拉算法,求解任意两点最短路径: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXN 100 // 最大顶点数 #define INF 0x3f3f3f3f // 无穷大 int edge[MAXN][MAXN]; // 邻接矩阵 int dis[MAXN][MAXN]; // 存储任意两点最短路径长度 int vis[MAXN]; // 标记顶点是否已经被访问 // 迪杰斯特拉算法 void dijkstra(int s, int n) { memset(dis, INF, sizeof(dis)); // 初始化为无穷大 memset(vis, 0, sizeof(vis)); // 初始化为未访问 dis[s][s] = 0; // 源点到自己的距离为0 // 依次遍历所有顶点 for (int i = 1; i <= n; i++) { int k = 0; for (int j = 1; j <= n; j++) { if (!vis[j] && (k == 0 || dis[s][j] < dis[s][k])) { k = j; // 找到距离源点s最近的未访问顶点 } } if (k == 0) break; // 如果没有找到,则退出循环 vis[k] = 1; // 标记为已访问 // 更新距离 for (int j = 1; j <= n; j++) { if (edge[k][j] != INF && dis[s][k] + edge[k][j] < dis[s][j]) { dis[s][j] = dis[s][k] + edge[k][j]; } } } } int main() { int n, m; // n为顶点数,m为边数 scanf("%d%d", &n, &m); memset(edge, INF, sizeof(edge)); // 初始化为无穷大 for (int i = 1; i <= m; i++) { int u, v, w; // u和v为一条边的两个端点,w为边权 scanf("%d%d%d", &u, &v, &w); edge[u][v] = edge[v][u] = w; // 记录边权 } // 求解任意两点最短路径 for (int i = 1; i <= n; i++) { dijkstra(i, n); } // 输出任意两点最短路径长度 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { printf("%d ", dis[i][j]); } printf("\n"); } return 0; } ``` 在输入时,我们先读入顶点数n、边数m和每条边的信息(起点、终点和边权)。然后,我们调用dijkstra函数,求解任意两点最短路径。在dijkstra函数中,我们先将所有顶点的最短路径长度初始化为无穷大,源点到自己的距离为0。然后,我们依次遍历所有顶点,找到距离源点s最近的未访问顶点,标记为已访问,并更新距离。最后,我们输出任意两点最短路径长度。 注意,在dijkstra函数中,我们使用dis数组存储任意两点最短路径长度,其中dis[s][t]表示从源点s到终点t的最短路径长度。我们还使用vis数组标记顶点是否已经被访问。 另外,我们使用INF表示无穷大,可以用一个足够大的整数代替。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

求索永无止境

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值