系列文章目录
基于python的RFM模型分析
前言
RFM模型是评价用户分层的一个非常有价值的模型,主要是通过评分的方式量化用户R/F/M三个行为层面上的数据,在日常工作中,RFM模型还经常与AARRR模型一起使用以对用户进行分类,以寻找我们运营中核心关注的用户,以花更多的精力去维护这些核心用户群体。提示:以下是本篇文章正文内容,下面案例可供参考
一、RFM是什么?
关于RFM是什么,这里用一个脑图简单的阐述一下,特别注意一点是规定周期下,这个周期可以基于我们的业务常识或者基于程序去定义,在我看来这个周期可以是个变量,如果后期进行机器学习,我们可以回测这个变量值以判定周期的跨度为多少更为合适。
注意:基于第一性原理原则,这里的数据清洗将不再阐述,呈现的数据将是数据清洗过后的数据,目标是快速掌握RFM的具体含义。
二、分析步骤
1.引入库
代码如下(示例):
import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
2.读入数据
代码如下(示例):
df =pd.read_csv('./Online Retail.csv')
print(df .head(3))
数据结构:这里用excel呈现可视化效果更好
计算表的Monery值,以及其时间跨度(方便计算R值)
#创建新的列,用来存储每个用户的Monetary Value
df['TotalSum'] = df['UnitPrice']* df['Quantity']
#查看整个