基于产品的RFM模型分析

系列文章目录

基于python的RFM模型分析



前言

RFM模型是评价用户分层的一个非常有价值的模型,主要是通过评分的方式量化用户R/F/M三个行为层面上的数据,在日常工作中,RFM模型还经常与AARRR模型一起使用以对用户进行分类,以寻找我们运营中核心关注的用户,以花更多的精力去维护这些核心用户群体。

提示:以下是本篇文章正文内容,下面案例可供参考

一、RFM是什么?

关于RFM是什么,这里用一个脑图简单的阐述一下,特别注意一点是规定周期下,这个周期可以基于我们的业务常识或者基于程序去定义,在我看来这个周期可以是个变量,如果后期进行机器学习,我们可以回测这个变量值以判定周期的跨度为多少更为合适。
在这里插入图片描述

注意:基于第一性原理原则,这里的数据清洗将不再阐述,呈现的数据将是数据清洗过后的数据,目标是快速掌握RFM的具体含义。

二、分析步骤

1.引入库

代码如下(示例):

import datetime as dt
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np 
import pandas as pd

2.读入数据

代码如下(示例):

df =pd.read_csv('./Online Retail.csv')
print(df .head(3))

数据结构:这里用excel呈现可视化效果更好
在这里插入图片描述
计算表的Monery值,以及其时间跨度(方便计算R值)

#创建新的列,用来存储每个用户的Monetary Value
df['TotalSum'] = df['UnitPrice']* df['Quantity']

#查看整个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值