pandas
文章平均质量分 56
佛系人僧
hello ego.
展开
-
python 关于元组的一些写法
python元组运用原创 2022-09-05 22:53:48 · 316 阅读 · 0 评论 -
对需求的内容进行jieba分词并按词频排序输出excel文档
jieba原创 2022-07-21 23:13:45 · 2061 阅读 · 2 评论 -
国产爬虫库feapder使用心得
爬虫框架feapder细要原创 2022-07-03 10:11:41 · 2195 阅读 · 0 评论 -
A/B 测试:Python实战(新老页面的转化率测试)
AB test原创 2022-06-22 22:49:13 · 1186 阅读 · 1 评论 -
COM自动化使用电脑程序
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、COM是什么?二、使用步骤1.打开EXCEL2.在Excel中打开文件总结前言Python有许多本地创建通用Microsoft Office文件类型的选项,包括Excel、Word和PowerPoint。然而,在某些情况下,使用纯python方法解决问题可能太困难了。幸运的是,python有一个名为pywin32的“python for Windows Extensions”包,它允许我们轻松地访问Windows的组.原创 2022-03-09 22:44:10 · 1300 阅读 · 0 评论 -
关于安装深度学习环境以及调试rembg库出现的问题的脑图归纳(backup)
主要涉及从硬件购买到系统搭建以及深度学习环境配置,以及调试rembg库出现的一些问题的总结。原创 2022-01-31 08:51:11 · 1362 阅读 · 5 评论 -
基于产品的RFM模型的k-means聚类分析
首先我们可以看看数据集的数据形态:导入rfm数据,查看数据的统计学参数df =pd.read_csv('rfm.csv')df.describe()在实施Kmeans聚类之前,我们必须检查这些关键k-means假设-变量对称分布(不倾斜)-具有相同平均值的变量-方差相同的变量从这个表中,我们发现了这个问题:均值和方差不相等解决:使用scikit-learn库中的标量来缩放变量#绘制RFM值的分布f,ax = plt.subplots(figsize=(10, 12))plt.s原创 2022-01-26 17:04:03 · 2771 阅读 · 2 评论 -
基于产品的RFM模型分析
系列文章目录基于python的RFM模型分析提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、RFM是什么?二、分析步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:RFM模型是评价用户分层的一个非常有价值的模型,主要是通过评分的方式量化用户R/F/M三个行为层面上的数据,在日常工作中,RFM模型还经常与AARRR模型一起使用以对用户进行分类,以寻找我们运营中核心关注的用户,以花更多的精力去维护这些核心用户群体。提示:以原创 2022-01-26 12:10:00 · 2368 阅读 · 0 评论 -
基于用户的产品分析之Cohort Analysis(群组分析,留存分析)
在产品正式上线后,我们需要对产品的客群对象进行分析,此时产品的群组分析会给予我们找到一定的方向。核心的维度:产品 ->客群,时间->聚类周期现象首先读取数据集:import numpy as npimport pandas as pd df = pd.read_excel('./Online Retail.xlsx')查看数据前五列/info#%%df.head()#%%df.info()通过结果,我们可以看到数据有8个字段,其中,Description列和C原创 2022-01-21 08:40:51 · 1437 阅读 · 0 评论 -
销售转化率分析
数据字段阐述:* *数据:* *这个项目中使用的数据来自一个匿名组织的社交媒体广告活动。1) ad_id:每个ad的唯一ID。2) XYZ campaign ID: XYZ公司每一个广告活动的ID。3) fbcampaigns:一个与Facebook如何追踪每个活动相关的ID。4) age:显示AD的对象的年龄。5) gender:性别的人心血来潮添加显示6) interest:指定个人兴趣所属类别的代码(个人的Facebook公开资料中提到的兴趣)。7) Impressions:广告被播原创 2022-01-18 08:51:44 · 1144 阅读 · 0 评论 -
python lambda及正则表达式实现数据预处理
#%%import pandas as pdimport numpy as np#%% mdcar price prediction#%%# create a dataframe abut the car pricedf = pd.DataFrame({'mileage':['23.4 kmpl','21.4 kmpl','20.4 kmpl'], 'engine':['1.4 liter','1.2 liter','1.5 liter'],原创 2022-01-16 22:53:31 · 734 阅读 · 1 评论 -
利用pandas计算一月至今的所有月份(欢迎评论区留下其他方法)
import pandas as pdfrom datetime import datetime# calculate the year and month from '2021-01-01' to nowdf = pd.DataFrame(pd.date_range('2021-01-01', datetime.now(), freq='M'), columns=['begin_month'])# offset the month by 1df['end_month'] = df['begi原创 2022-01-08 23:55:43 · 882 阅读 · 0 评论