sklearn期望方差explained_variance_score

在这里插入图片描述
当期望值(预测值)与真实值相同时,explained_variance_score=1
所以explained_variance_score越小,预测值越远。

发现这个点的起因是,按照sklearn官网例子练习时,突发奇想,测试一下某个回归模型的准确率。但是报错了ValueError: continuous is not supported
在这里插入图片描述
在网上查完以后决定改用explained_variance_score,报错原因是accuracy_score适合于分类模型,而本例是回归模型,可以用explained_variance_score.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值