可释方差得分

可释方差得分(EVS)是衡量回归模型预测准确性的指标,表示模型解释数据方差的比例。它通过计算解释方差(ESS)占总方差(TSS)的比例来得出,范围在0到1之间。EVS为1表示完美预测,0则表示无解释能力,较高的EVS值意味着模型性能更好,适合用于比较不同模型的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可释方差得分(Explained Variance Score,EVS)是一种用于评估回归模型预测准确度的指标。它表示模型能够解释数据方差的比例,通常用于比较不同模型的表现。

假设有n个样本,真实值分别为y₁, y₂, ……, yₙ,预测值分别为ŷ₁, ŷ₂, ……, ŷₙ。首先,我们可以定义总方差(Total Sum of Squares,TSS)为真实值y的方差,即:

TSS = Σ(yᵢ - ȳ)² / n,(i=1,2,…,n)

其中,ȳ为所有真实值的平均数。

我们希望得到模型的解释方差,即预测值能够解释的数据方差。因此,我们可以定义解释方差(Explained Sum of Squares,ESS)为:

ESS = Σ(ŷᵢ - ȳ)² / n,(i=1,2,…,n)

其中,ȳ为所有真实值的平均数。

最后,我们可以计算可释方差得分为解释方差占总方差的比例,即:

EVS = 1 - (ESS / TSS)

可释方差得分的取值范围为[0,1],当EVS为1时,表示模型完美预测了数据;当EVS为0时,表示模型无法解释数据方差。在实际应用中,EVS通常用于比较不同模型的表现,取值越接近1,表示模型解释的数据方差越多,表现越好。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值