Summarized from CUHK(SZ) MAT2041(2022Fall) Lecture 16.
Definition
Using Gauss-Jordan Elimination, we can solve the linear system A x = b Ax=b Ax=b, where A A A is a n × n n\times n n×n matrix and x , b x,b x,b are n × 1 n\times 1 n×1 vectors. However, in real world, matrix A A A is not always a square matrix. There are thousands of people rating for a few aspects of one thing. Thus A A A is usually a tall matrix. If A A A is a tall matrix, the solution set to A x = b Ax=b Ax=b may be empty. Then we want to find a best approximation of x x x that minimizes ∣ ∣ A x − b ∣ ∣ ||Ax-b||