Linear Algebra 1: Projection and Least Square Problem

在解决线性方程组Ax=b时,如果A是瘦高矩阵,可能存在无解的情况。此时,我们寻求使Ax-b的模长最小的x^。最小二乘问题要求找到使Ax-b的模长最小的x^。当b不在A的列空间内时,x^是b到由Ax定义的平面的投影。通过解方程ATAx=ATb,即正常方程,可以找到最小二乘解。若ATA可逆,则x^=(ATA)^{-1}ATb。
摘要由CSDN通过智能技术生成

Summarized from CUHK(SZ) MAT2041(2022Fall) Lecture 16.

Definition

Using Gauss-Jordan Elimination, we can solve the linear system A x = b Ax=b Ax=b, where A A A is a n × n n\times n n×n matrix and x , b x,b x,b are n × 1 n\times 1 n×1 vectors. However, in real world, matrix A A A is not always a square matrix. There are thousands of people rating for a few aspects of one thing. Thus A A A is usually a tall matrix. If A A A is a tall matrix, the solution set to A x = b Ax=b Ax=b may be empty. Then we want to find a best approximation of x x x that minimizes ∣ ∣ A x − b ∣ ∣ ||Ax-b||

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值