Linear Algebra 2: Gram Schmidt Process

格拉姆-施密特正交化过程将任意一组线性无关向量转化为正交基,适用于高维空间。文章详细介绍了该过程的解决方案,从第一向量开始,通过逐步修正后续向量使其与前一向量正交,最终得到一组正交向量。同时,文章还讨论了正交化过程中关于投影的性质。
摘要由CSDN通过智能技术生成

Summarized from CUHK(SZ) MAT2041(2022Fall) Lecture 17.

Motivation

Any n n n linear independent n n n-vector can form a basis of a n n n-dim space. However, people are accustomed to orthogonal bases. In high school students learn only Cartesian coordinate system. If we can transform a random basis into an orthogonal (even orthonormal) basis, it’s more convenient in some situations.

Gram Schmidt Process: to change a random basis into an orthonormal basis.

Solution

Assume that the ordinary basis is { u 1 , u 2 , … , u n } \{u_1,u_2,\ldots,u_n\} { u1,u2,,un}, we want { v 1 , v 2 , … , v n } ( ∀ i ≠ j ,   v i T v j = 0 ; ∀ i , ∣ ∣ v i ∣ ∣ = 1 ) \{v_1,v_2,\ldots,v_n\}(\forall i\neq j,\ v_i^Tv_j=0;\forall i, ||v_i||=1) { v1,v2,,vn}(i=j, viTvj=0;i,∣∣vi∣∣=1).

There’s no limitation to the first vector, for convenience, we just pick v 1 = u 1 ∣ ∣ u 1 ∣ ∣ v_1=\frac{u_1}{||u_1||} v1=∣∣u1∣∣u1.

Then we try to modify u 2 u_2 u2 to meet the requirements.

u 2 u_2 u2 should be orthogonal to v 1 v_1 v1, and v 2 v_2 v2 could be expressed by only v 1 v_1 v1 and u 2 u_2 u2.

Thus we assume ( u 2 − α v 1 ) ⊥ v 1 (u_2-\alpha v_1)\bot v_1 (u2αv1)v1, then v 1 T u 2 = α v 1 T v 1 = α v_1^Tu_2=\alpha v_1^Tv_1=\alpha

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值