用numpy库手写算子七:Dense_backward
前言
我们经常可以调用pytorch,tensorflow库等来实现我们的神经网络,但是有的时候需要开发自己的框架,这个时候就得了解每一个算子的计算规则,了解这些计算规则也有助于我们了解他们的计算特性,然后就可以在底层优化上面有一定的针对性。
Dense_backward
def dense_backward(dout, x, w, b):
db = np.sum(dout, axis=0)
dx = dout.dot(w.T)
dw = x.T.dot(dout)
return dx, dw, db