【复现】msracver/Deformable-ConvNets

本文档详细介绍了在CUDA8.0和CUDNN7.1.3环境下,如何在非root的Centos7系统上安装CUDA和CUDNN。接着,通过Anaconda2创建新环境并安装MXNet-RFCN所需依赖。在遇到pip安装mxnet-cu80时的问题后,文章提供了解决问题的方法,包括模型克隆、初始化和运行demo的步骤,最终展示实验结果。
摘要由CSDN通过智能技术生成

环境要求

1. CUDA8.0(cudnn版本为7.1.3)

Linux, Centos7,非root 安装cuda和cudnn,参考:

https://blog.csdn.net/cheneykl/article/details/85785558

https://blog.csdn.net/qq_27825451/article/details/100632131

总结:

a.装cuda,过程中需要指定cuda的路径,第一个博客有详细说明每次的选项是yes还是no

b.下载cudnn,用cp替换,并且为他们添加权限 chmod a+r

c.在.bashrc中添加路径,具体见第一个博客最后。

 

2. 安装anaconda2,并创建新的环境

conda create -n rfcn -y
conda activate rfcn

 

3. 安装requirements.txt的第三方库

因为使用pip install mxnet-cu80,之后各种报错,解决方法:

conda activate rfcn
conda install mxnet-gpu python=2.7 # 指定python版本

开始mxnet-rfcn之旅

1.完成clone并将模型放到指定位置

2.初始化和运行demo

cd $RFCN-root
co
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值