环境要求
1. CUDA8.0(cudnn版本为7.1.3)
Linux, Centos7,非root 安装cuda和cudnn,参考:
https://blog.csdn.net/cheneykl/article/details/85785558
https://blog.csdn.net/qq_27825451/article/details/100632131
总结:
a.装cuda,过程中需要指定cuda的路径,第一个博客有详细说明每次的选项是yes还是no
b.下载cudnn,用cp替换,并且为他们添加权限 chmod a+r
c.在.bashrc中添加路径,具体见第一个博客最后。
2. 安装anaconda2,并创建新的环境
conda create -n rfcn -y
conda activate rfcn
3. 安装requirements.txt的第三方库
因为使用pip install mxnet-cu80,之后各种报错,解决方法:
conda activate rfcn
conda install mxnet-gpu python=2.7 # 指定python版本
开始mxnet-rfcn之旅
1.完成clone并将模型放到指定位置
2.初始化和运行demo
cd $RFCN-root
co