作业:
day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models
import torch.nn.functional as F
from PIL import Image
import os
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import cv2
import random
# 设置随机种子确保结果可复现
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 数据集路径
data_dir = r"D:\archive (1)\MY_data"
# 数据预处理和增强
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=train_transform)
test_dataset = datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=test_transform)
# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
# 获取类别名称
classes = train_dataset.classes
print(f"类别: {classes}")
# CBAM注意力机制实现
class ChannelAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, in_channels // reduction_ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_channels // reduction_ratio, in_channels, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x_cat = torch.cat([avg_out, max_out], dim=1)
out = self.conv(x_cat)
return self.sigmoid(out)
class CBAM(nn.Module):
def __init__(self, in_channels, reduction_ratio=16, kernel_size=7):
super(CBAM, self).__init__()
self.channel_attention = ChannelAttention(in_channels, reduction_ratio)
self.spatial_attention = SpatialAttention(kernel_size)
def forward(self, x):
x = x * self.channel_attention(x)
x = x * self.spatial_attention(x)
return x
# 定义改进的CNN模型(支持多种预训练模型和CBAM注意力机制)
class EnhancedFruitClassifier(nn.Module):
def __init__(self, num_classes=10, model_name='resnet18', use_cbam=True):
super(EnhancedFruitClassifier, self).__init__()
self.use_cbam = use_cbam
# 根据选择加载不同的预训练模型
if model_name == 'resnet18':
self.model = models.resnet18(pretrained=True)
in_features = self.model.fc.in_features
# 保存原始层以便后续使用
self.features = nn.Sequential(*list(self.model.children())[:-2])
self.avgpool = self.model.avgpool
elif model_name == 'resnet50':
self.model = models.resnet50(pretrained=True)
in_features = self.model.fc.in_features
self.features = nn.Sequential(*list(self.model.children())[:-2])
self.avgpool = self.model.avgpool
elif model_name == 'efficientnet_b0':
self.model = models.efficientnet_b0(pretrained=True)
in_features = self.model.classifier[1].in_features
self.features = nn.Sequential(*list(self.model.children())[:-1])
self.avgpool = nn.AdaptiveAvgPool2d(1)
else:
raise ValueError(f"不支持的模型: {model_name}")
# 冻结大部分预训练层
for param in list(self.model.parameters())[:-5]:
param.requires_grad = False
# 添加CBAM注意力机制
if use_cbam:
self.cbam = CBAM(in_features)
# 修改最后一层以适应我们的分类任务
self.fc = nn.Linear(in_features, num_classes)
def forward(self, x):
# 特征提取
x = self.features(x)
# 应用CBAM注意力机制
if self.use_cbam:
x = self.cbam(x)
# 全局池化
x = self.avgpool(x)
x = torch.flatten(x, 1)
# 分类
x = self.fc(x)
return x
# 初始化模型 - 可以选择不同的预训练模型和是否使用CBAM
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = EnhancedFruitClassifier(
num_classes=len(classes),
model_name='resnet18', # 可选: 'resnet18', 'resnet50', 'efficientnet_b0'
use_cbam=True
).to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# 训练模型
def train_model(model, train_loader, criterion, optimizer, scheduler, device, epochs=10):
model.train()
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
progress_bar = tqdm(enumerate(train_loader), total=len(train_loader))
for i, (inputs, labels) in progress_bar:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
progress_bar.set_description(f"Epoch {epoch+1}/{epochs}, "
f"Loss: {running_loss/(i+1):.4f}, "
f"Acc: {100.*correct/total:.2f}%")
scheduler.step()
print(f"Epoch {epoch+1}/{epochs}, "
f"Train Loss: {running_loss/len(train_loader):.4f}, "
f"Train Acc: {100.*correct/total:.2f}%")
return model
# 评估模型
def evaluate_model(model, test_loader, device):
model.eval()
correct = 0
total = 0
class_correct = list(0. for i in range(len(classes)))
class_total = list(0. for i in range(len(classes)))
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
# 计算每个类别的准确率
for i in range(len(labels)):
label = labels[i]
class_correct[label] += (predicted[i] == label).item()
class_total[label] += 1
print(f"测试集整体准确率: {100.*correct/total:.2f}%")
# 打印每个类别的准确率
for i in range(len(classes)):
if class_total[i] > 0:
print(f"{classes[i]} 类别的准确率: {100.*class_correct[i]/class_total[i]:.2f}%")
else:
print(f"{classes[i]} 类别的样本数为0")
return 100.*correct/total
# Grad-CAM实现
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
# 注册钩子
self.hook_handles = []
# 保存梯度的钩子
def backward_hook(module, grad_in, grad_out):
self.gradients = grad_out[0]
return None
# 保存激活值的钩子
def forward_hook(module, input, output):
self.activations = output
return None
self.hook_handles.append(
target_layer.register_forward_hook(forward_hook)
)
self.hook_handles.append(
target_layer.register_backward_hook(backward_hook)
)
def __call__(self, x, class_idx=None):
# 前向传播
model_output = self.model(x)
if class_idx is None:
class_idx = torch.argmax(model_output, dim=1)
# 构建one-hot向量
one_hot = torch.zeros_like(model_output)
one_hot[0, class_idx] = 1
# 反向传播
self.model.zero_grad()
model_output.backward(gradient=one_hot, retain_graph=True)
# 计算权重(全局平均池化梯度)
weights = torch.mean(self.gradients, dim=(2, 3), keepdim=True)
# 加权组合激活映射
cam = torch.sum(weights * self.activations, dim=1).squeeze()
# ReLU激活,因为我们只关心对类别有正贡献的区域
cam = F.relu(cam)
# 归一化
if torch.max(cam) > 0:
cam = cam / torch.max(cam)
# 调整大小到输入图像尺寸
cam = F.interpolate(cam.unsqueeze(0).unsqueeze(0),
size=(x.size(2), x.size(3)),
mode='bilinear',
align_corners=False).squeeze()
return cam.detach().cpu().numpy(), class_idx.item()
def remove_hooks(self):
for handle in self.hook_handles:
handle.remove()
# 可视化Grad-CAM结果
def visualize_gradcam(img_path, model, target_layer, classes, device):
# 加载并预处理图像
img = Image.open(img_path).convert('RGB')
img_tensor = test_transform(img).unsqueeze(0).to(device)
# 初始化Grad-CAM
grad_cam = GradCAM(model, target_layer)
# 获取Grad-CAM热力图
cam, pred_class = grad_cam(img_tensor)
# 反归一化图像以便显示
img_np = img_tensor.squeeze().cpu().numpy().transpose((1, 2, 0))
img_np = img_np * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406])
img_np = np.clip(img_np, 0, 1)
# 调整热力图大小
heatmap = cv2.resize(cam, (img_np.shape[1], img_np.shape[0]))
# 创建彩色热力图
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
heatmap = np.float32(heatmap) / 255
# 叠加原始图像和热力图
superimposed_img = heatmap * 0.4 + img_np
superimposed_img = np.clip(superimposed_img, 0, 1)
# 显示结果
plt.figure(figsize=(15, 5))
plt.subplot(131)
plt.imshow(img_np)
plt.title('原始图像')
plt.axis('off')
plt.subplot(132)
plt.imshow(cam, cmap='jet')
plt.title('Grad-CAM热力图')
plt.axis('off')
plt.subplot(133)
plt.imshow(superimposed_img)
plt.title(f'叠加图像\n预测类别: {classes[pred_class]}')
plt.axis('off')
plt.tight_layout()
plt.show()
# 预测函数
def predict_image(img_path, model, classes, device):
# 加载并预处理图像
img = Image.open(img_path).convert('RGB')
img_tensor = test_transform(img).unsqueeze(0).to(device)
# 预测
model.eval()
with torch.no_grad():
outputs = model(img_tensor)
probs = F.softmax(outputs, dim=1)
top_probs, top_classes = probs.topk(5, dim=1)
# 打印预测结果
print(f"图像: {os.path.basename(img_path)}")
print("预测结果:")
for i in range(top_probs.size(1)):
print(f"{classes[top_classes[0, i]]}: {top_probs[0, i].item() * 100:.2f}%")
return top_classes[0, 0].item()
# 主函数
def main():
# 训练模型
print("开始训练模型...")
trained_model = train_model(model, train_loader, criterion, optimizer, scheduler, device, epochs=5)
# 评估模型
print("\n评估模型...")
evaluate_model(trained_model, test_loader, device)
# 保存模型
model_path = "fruit_classifier.pth"
torch.save(trained_model.state_dict(), model_path)
print(f"\n模型已保存至: {model_path}")
# 可视化Grad-CAM结果
print("\n可视化Grad-CAM结果...")
# 从测试集中随机选择几张图像进行可视化
predict_dir = os.path.join(data_dir, 'predict')
if os.path.exists(predict_dir):
# 使用predict目录中的图像
image_files = [os.path.join(predict_dir, f) for f in os.listdir(predict_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
if len(image_files) > 0:
# 随机选择2张图像
sample_images = random.sample(image_files, min(2, len(image_files)))
for img_path in sample_images:
print(f"\n处理图像: {img_path}")
# 预测图像类别
pred_class = predict_image(img_path, trained_model, classes, device)
# 可视化Grad-CAM
if hasattr(trained_model, 'model') and hasattr(trained_model.model, 'layer4'):
# 对于ResNet系列模型
visualize_gradcam(img_path, trained_model, trained_model.model.layer4[-1].conv2, classes, device)
else:
# 对于其他模型,使用最后一个特征层
visualize_gradcam(img_path, trained_model, list(trained_model.features.children())[-1], classes, device)
else:
print(f"predict目录为空,无法进行可视化")
else:
print(f"predict目录不存在,无法进行可视化")
if __name__ == "__main__":
main()
import torch
import torchvision.models as models
from torchinfo import summary #之前的内容说了,推荐用他来可视化模型结构,信息最全
# 加载 ResNet18(预训练)
model = models.resnet18(pretrained=True)
model.eval()
# 输出模型结构和参数概要
summary(model, input_size=(1, 3, 224, 224))
import torch
import torch.nn as nn
from torchvision import models
# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):
def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):
super().__init__()
# 加载预训练ResNet18
self.backbone = models.resnet18(pretrained=pretrained)
# 修改首层卷积以适应32x32输入(CIFAR10)
self.backbone.conv1 = nn.Conv2d(
in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False
)
self.backbone.maxpool = nn.Identity() # 移除原始MaxPool层(因输入尺寸小)
# 在每个残差块组后添加CBAM模块
self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)
self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)
self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)
self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)
# 修改分类头
self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
# 主干特征提取
x = self.backbone.conv1(x)
x = self.backbone.bn1(x)
x = self.backbone.relu(x) # [B, 64, 32, 32]
# 第一层残差块 + CBAM
x = self.backbone.layer1(x) # [B, 64, 32, 32]
x = self.cbam_layer1(x)
# 第二层残差块 + CBAM
x = self.backbone.layer2(x) # [B, 128, 16, 16]
x = self.cbam_layer2(x)
# 第三层残差块 + CBAM
x = self.backbone.layer3(x) # [B, 256, 8, 8]
x = self.cbam_layer3(x)
# 第四层残差块 + CBAM
x = self.backbone.layer4(x) # [B, 512, 4, 4]
x = self.cbam_layer4(x)
# 全局平均池化 + 分类
x = self.backbone.avgpool(x) # [B, 512, 1, 1]
x = torch.flatten(x, 1) # [B, 512]
x = self.backbone.fc(x) # [B, 10]
return x
# 初始化模型并移至设备
model = ResNet18_CBAM().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
import time
# ======================================================================
# 4. 结合了分阶段策略和详细打印的训练函数
# ======================================================================
def set_trainable_layers(model, trainable_parts):
print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")
for name, param in model.named_parameters():
param.requires_grad = False
for part in trainable_parts:
if part in name:
param.requires_grad = True
break
def train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):
optimizer = None
# 初始化历史记录列表,与你的要求一致
all_iter_losses, iter_indices = [], []
train_acc_history, test_acc_history = [], []
train_loss_history, test_loss_history = [], []
for epoch in range(1, epochs + 1):
epoch_start_time = time.time()
# --- 动态调整学习率和冻结层 ---
if epoch == 1:
print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)
set_trainable_layers(model, ["cbam", "backbone.fc"])
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
elif epoch == 6:
print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)
set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
elif epoch == 21:
print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)
for param in model.parameters(): param.requires_grad = True
optimizer = optim.Adam(model.parameters(), lr=1e-5)
# --- 训练循环 ---
model.train()
running_loss, correct, total = 0.0, 0, 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 记录每个iteration的损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)
running_loss += iter_loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 按你的要求,每100个batch打印一次
if (batch_idx + 1) % 100 == 0:
print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
train_loss_history.append(epoch_train_loss)
train_acc_history.append(epoch_train_acc)
# --- 测试循环 ---
model.eval()
test_loss, correct_test, total_test = 0, 0, 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
test_loss_history.append(epoch_test_loss)
test_acc_history.append(epoch_test_acc)
# 打印每个epoch的最终结果
print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
# 训练结束后调用绘图函数
print("\n训练完成! 开始绘制结果图表...")
plot_iter_losses(all_iter_losses, iter_indices)
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
# 返回最终的测试准确率
return epoch_test_acc
# ======================================================================
# 5. 绘图函数定义
# ======================================================================
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('每个 Iteration 的训练损失')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('训练和测试准确率')
plt.legend(); plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('训练和测试损失')
plt.legend(); plt.grid(True)
plt.tight_layout()
plt.show()
# ======================================================================
# 6. 执行训练
# ======================================================================
model = ResNet18_CBAM().to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50
print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# torch.save(model.state_dict(), 'resnet18_cbam_finetuned.pth')
# print("模型已保存为: resnet18_cbam_finetuned.pth")