Lightgbm学习笔记

lightgbm是微软提出的框架,支持各种不同的语言,其GitHub为https://github.com/Microsoft/LightGBM

它的相关技术文章LightGBM: A Highly Efficient Gradient Boosting Decision Tree发表于NIPS2017. 文章认为,GBDT运行过程中的主要代价是在学习新的决策树的过程中,选择best split points的过程。在lightgbm之前,在这上面使用的主要优化方法包括:

Presorted,即对所有数据点进行预排序。排序代价至少为 O(#data * log(#data))
Histgram,即对数据生成feature直方图,并根据直方图进行划分。生成直方图的代价为 O(#data * #feature), 而根据排序后的数据寻找划分点的代价为 O(#bin * #feature). 一般来说 #bin是远远小于#feature的。Scikit-learn支持presorted优化方法,pGBRT支持hist优化方法,而XGboost支持这两个方法。

文章主要提出的创新包括两点:

Gradient-Based One-Side Sampling(GOSS)

GOSS的目标是降低运行中的资源消耗。它的主要思想是类似于adaboost,样本应该具有不同的权重。但在GBDT中,样本的权重都是一样的,所以它根据样本梯度来确定样本重要性。但是直接把小梯度的样本去掉会影响数据分布,所以选择了采样方法。
它首先根据样本能产生的梯度对样本进行排序。根据这一排序,它保留前a%的样本,并在其他样本中随机选择总样本数量b%的样本。对这b%的小梯度的样本,在计算information gain时进行放大,放大系数为 ( 1 − a ) / b (1-a)/b (1a)/b。文章证明了这种采样方法会产生的偏差是很小的。
在这里插入图片描述

Exclusive Feature Bundling (EFB)

EFB是一种feature组合方法,其主要思想为:在大数据集中,存在许多的稀疏高维feature,这些feature中,有些是完全没有交集的(即在任何一个样本中,两个feature不存在同时不为0的情况),那么这些feature就完全可以被安全地合并起来。通过把feature聚合成一些bundle,我们可以把histogram building cost从 O(#feature * #data)降低到 O(#bundle * #data).
把feature聚合成bundle的最优算法等同于图着色问题,是一个NP-hard问题,所以我们只能用贪心算法得到近似解。
在合并feature时,lightgbm使用的算法为range扩展。例如我们要合并feature A和feature B, A ∈ [ 0 , 10 ) A \in [0, 10) A[0,10), B ∈ [ 0 , 20 ) B \in [0, 20) B[0,20),则我们给B一个offset,合并后的新feature范围为 [ 0 , 30 ) [0, 30) [0,30).
在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值