《大学数学3(第三版)》第一章(2)

第四节|行列式按行(列)展开

余子式与代数余子式
  • 余子式:在 n n n阶行列式中,把元素 a i j a_{ij} aij i i i j = 1 j=1 j=1 2 2 2 ⋯ \cdots n n n)所在的行和列划去后,剩下的 ( n − 1 ) 2 (n - 1)^{2} (n1)2个元素按原来的顺序构成的 n − 1 n - 1 n1阶行列式称为元素 a i j a_{ij} aij的余子式,记作 M i j M_{ij} Mij
  • 代数余子式:余子式带上符号 ( − 1 ) i + j (-1)^{i + j} (1)i+j称为 a i j a_{ij} aij的代数余子式,记作 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i + j}M_{ij} Aij=(1)i+jMij
拉普拉斯展开定理
  • n n n阶行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即

D = ∑ k = 1 n a i k A i k ,      i = 1 , 2 , ⋯   , n D= \sum_{k = 1}^{n}a_{ik}A_{ik} , \ \ \ \ i = 1,2,\cdots,n D=k=1naikAik,    i=1,2,,n

    • 证明
      • 先证

D ′ = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 A 11 D^{'}= \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix}= a_{11}A_{11} D= a11a21an10a22an20a2nann =a11A11

      • 由行列式定义

∑ ( j 1 j 2 ⋯ j n ) ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n = ∑ ( j 2 ⋯ j n ) ( − 1 ) τ ( 1 j 2 ⋯ j n ) a 11 a 2 j 2 ⋯ a n j n = a 11 ∑ ( j 2 ⋯ j n ) ( − 1 ) τ ( j 2 ⋯ j n ) a 2 j 2 ⋯ a n j n = a 11 M 11 = a 11 A 11 \begin{aligned} \sum_{(j_{1}j_{2} \cdots j_{n})}(-1)^{\tau(j_{1}j_{2} \cdots j_{n})}a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} &= \sum_{(j_{2} \cdots j_{n})}(-1)^{\tau(1j_{2} \cdots j_{n})}a_{11}a_{2j_{2}} \cdots a_{nj_{n}} \\ &= a_{11}\sum_{(j_{2} \cdots j_{n})}(-1)^{\tau(j_{2} \cdots j_{n})}a_{2j_{2}} \cdots a_{nj_{n}} \\ &= a_{11}M_{11} \\ &= a_{11}A_{11} \end{aligned} (j1j2jn)(1)τ(j1j2jn)a1j1a2j2anjn=(j2jn)(1)τ(1j2jn)a11a2j2anjn=a11(j2jn)(1)τ(j2jn)a2j2anjn=a11M11=a11A11

      • 再证一般情形

D ′ ′ = ∣ a 11 ⋯ a 1 j ⋯ a 1 n ⋮ ⋮ ⋮ 0 ⋯ a i j ⋯ 0 ⋮ ⋮ ⋮ a n 1 ⋯ a n j ⋯ a n n ∣ = a i j A i j D^{''}= \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & a_{ij} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \\ \end{vmatrix}= a_{ij}A_{ij} D′′= a110an1a1jaijanja1n0ann =aijAij

      • D ′ ′ D^{''} D′′的第 i i i行依次与第 i − 1 i - 1 i1 ⋯ \cdots 2 2 2 1 1 1行交换后换到第一行,再把第 j j j列依次与 j − 1 j - 1 j1 ⋯ \cdots 2 2 2 1 1 1列交换后换到第 1 1 1列,则总共经过 i + j − 2 i + j - 2 i+j2次交换后,把 a i j a_{ij} aij交换到 D ′ ′ D^{''} D′′的左上角,化成 D ′ D^{'} D的形式,从而

D ′ ′ = ( − 1 ) i + j − 2 a i j M i j = a i j ( − 1 ) i + j M i j = a i j A i j D^{''}= (-1)^{i + j - 2}a_{ij}M_{ij}= a_{ij}(-1)^{i + j}M_{ij}= a_{ij}A_{ij} D′′=(1)i+j2aijMij=aij(1)i+jMij=aijAij

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + 0 + ⋯ + 0 0 + a i 2 + 0 + ⋯ + 0 ⋯ 0 + ⋯ + 0 + a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 0 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ 0 a i 2 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ⋯ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ 0 0 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n ( i = 1 , 2 , ⋯   , n ) \begin{aligned} D &= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} + 0 + \cdots + 0 & 0 + a_{i2} + 0 + \cdots + 0 & \cdots & 0 + \cdots + 0 + a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} \\ &= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{i2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} \\ &= a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}(i = 1,2,\cdots,n) \end{aligned} D= a11ai1+0++0an1a120+ai2+0++0an2a1n0++0+ainann = a11ai1an1a120an2a1n0ann + a110an1a12ai2an2a1n0ann ++ a110an1a120an2a1nainann =ai1Ai1+ai2Ai2++ainAin(i=1,2,,n)

  • n n n阶行列式的任一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即

∑ k = 1 n a i k A j k = 0 ,      i ≠ j \sum_{k = 1}^{n}a_{ik}A_{jk} = 0 , \ \ \ \ i \neq j k=1naikAjk=0,    i=j

    • 证明

D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a j 1 a j 2 ⋯ a j n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D= a11ai1aj1an1a12ai2aj2an2a1nainajnann

D 1 = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ D_{1}= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} D1= a11ai1ai1an1a12ai2ai2an2a1nainainann

      • 显然, D 1 = 0 D_{1} = 0 D1=0,且 D 1 D_{1} D1 D D D的第 j j j行各元素的代数余子式对应相等,将 D 1 D_{1} D1按第 j j j行展开,得

a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = ∑ k = 1 n a i k A j k = 0 a_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{in}A_{jn}= \sum_{k = 1}^{n}a_{ik}A_{jk} = 0 ai1Aj1+ai2Aj2++ainAjn=k=1naikAjk=0

      • D D D中第 i i i行各元素与第 j j j行对应元素的代数余子式得乘积之和等于零
例题 1 1 1
  • 问题:证明范德蒙德行列式

D n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) ,      n ≥ 2 D_{n}= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \cdots & x_{n}^{n - 1} \end{vmatrix}= \prod_{1 \leq j < i \leq n}(x_{i} - x_{j}) , \ \ \ \ n \geq 2 Dn= 1x1x12x1n11x2x22x2n11xnxn2xnn1 =1j<in(xixj),    n2

  • 解答
    • 用数学归纳法证明
    • n = 2 n = 2 n=2

D 2 = ∣ 1 1 x 1 x 2 ∣ = x 2 − x 1 D_{2}= \begin{vmatrix} 1 & 1 \\ x_{1} & x_{2} \end{vmatrix}= x_{2} - x_{1} D2= 1x11x2 =x2x1

    • 结论成立
    • 假设对于 n − 1 n - 1 n1阶范德蒙德行列式结论成立,证 n n n阶情形,对于 D n D_{n} Dn,从第 n n n行开始,每行减去上面一行与 x 1 x_{1} x1的乘积,得

D n = ∣ 1 1 ⋯ 1 0 x 2 − x 1 ⋯ x n − x 1 0 x 2 ( x 2 − x 1 ) ⋯ x n ( x n − x 1 ) ⋮ ⋮ ⋮ 0 x 2 n − 2 ( x 2 − x 1 ) ⋯ x n n − 2 ( x n − x 1 ) ∣ = ∣ x 2 − x 1 ⋯ x n − x 1 x 2 ( x 2 − x 1 ) ⋯ x n ( x n − x 1 ) ⋮ ⋮ x 2 n − 2 ( x 2 − x 1 ) ⋯ x n n − 2 ( x n − x 1 ) ∣ = ( x 2 − x 1 ) ⋯ ( x n − x 1 ) ∣ 1 1 ⋯ 1 x 2 x 3 ⋯ x n x 2 2 x 3 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 2 n − 2 x 3 n − 2 ⋯ x n n − 2 ∣ \begin{aligned} D_{n} &= \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & x_{2} - x_{1} & \cdots & x_{n} - x_{1} \\ 0 & x_{2}(x_{2} - x_{1}) & \cdots & x_{n}(x_{n} - x_{1}) \\ \vdots & \vdots & & \vdots \\ 0 & x_{2}^{n - 2}(x_{2} - x_{1}) & \cdots & x_{n}^{n - 2}(x_{n} - x_{1}) \end{vmatrix} \\ &= \begin{vmatrix} x_{2} - x_{1} & \cdots & x_{n} - x_{1} \\ x_{2}(x_{2} - x_{1}) & \cdots & x_{n}(x_{n} - x_{1}) \\ \vdots & & \vdots \\ x_{2}^{n - 2}(x_{2} - x_{1}) & \cdots & x_{n}^{n - 2}(x_{n} - x_{1}) \end{vmatrix} \\ &= (x_{2} - x_{1}) \cdots (x_{n} - x_{1}) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{2} & x_{3} & \cdots & x_{n} \\ x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{2}^{n - 2} & x_{3}^{n - 2} & \cdots & x_{n}^{n - 2} \end{vmatrix} \end{aligned} Dn= 10001x2x1x2(x2x1)x2n2(x2x1)1xnx1xn(xnx1)xnn2(xnx1) = x2x1x2(x2x1)x2n2(x2x1)xnx1xn(xnx1)xnn2(xnx1) =(x2x1)(xnx1) 1x2x22x2n21x3x32x3n21xnxn2xnn2

    • 上式右端得行列式为 n − 1 n - 1 n1阶范德蒙德行列式,于是由归纳假设有

D n = ( x 2 − x 1 ) ⋯ ( x n − x 1 ) ∏ 2 ≤ j < i ≤ n ( x i − x j ) = ∏ 1 ≤ j < i ≤ n ( x i − x j ) \begin{aligned} D_{n} &= (x_{2} - x_{1}) \cdots (x_{n} - x_{1})\prod_{2 \leq j < i \leq n}(x_{i} - x_{j}) \\ &= \prod_{1 \leq j < i \leq n}(x_{i} - x_{j}) \end{aligned} Dn=(x2x1)(xnx1)2j<in(xixj)=1j<in(xixj)

拉普拉斯定理的推广
  • n n n阶行列式 D D D中,任意选定 k k k k k k列( 1 ≤ k ≤ n 1 \leq k \leq n 1kn),对于这些行和列交叉处的 k 2 k^{2} k2个元素,按原来的顺序构成一个 k k k阶行列式 M M M,称为 D D D的一个 k k k阶子式,划去这 k k k k k k列,余下的元素按原来的顺序构成一个 n − k n - k nk阶行列式,在其前面冠以符号 ( − 1 ) i 1 + i 2 + ⋯ + i k + j 1 + j 2 + ⋯ + j k (-1)^{i_{1} + i_{2} + \cdots + i_{k} + j_{1} + j_{2} + \cdots + j_{k}} (1)i1+i2++ik+j1+j2++jk称为 M M M的代数余子式
  • n n n阶行列式 D D D中,任意取定 k k k行(列)( 1 ≤ k ≤ n − 1 1 \leq k \leq n - 1 1kn1),由这 k k k行(列)组成的所有 k k k阶子式与它们的代数余子式的乘积之和等于行列式 D D D
例题 2 2 2
  • 问题:证明

D = ∣ a 11 ⋯ a 1 m 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ a m 1 ⋯ a m m 0 ⋯ 0 c 11 ⋯ c 1 m b 11 ⋯ b 1 n ⋮ ⋮ ⋮ ⋮ c n 1 ⋯ c n m b n 1 ⋯ b n n ∣ = ∣ a 11 ⋯ a 1 m ⋮ ⋮ a m 1 ⋯ a m m ∣ ∣ b 11 ⋯ b 1 n ⋮ ⋮ b n 1 ⋯ b n n ∣ D= \begin{vmatrix} a_{11} & \cdots & a_{1m} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} & 0 & \cdots & 0 \\ c_{11} & \cdots & c_{1m} & b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{n1} & \cdots & c_{nm} & b_{n1} & \cdots & b_{nn} \\ \end{vmatrix}= \begin{vmatrix} a_{11} & \cdots & a_{1m}\\ \vdots & & \vdots\\ a_{m1} & \cdots & a_{mm} \end{vmatrix} \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix} D= a11am1c11cn1a1mammc1mcnm00b11bn100b1nbnn = a11am1a1mamm b11bn1b1nbnn

  • 解答:取前面的 m m m行,由这 m m m行组成的所有 m m m阶子式中只有 D 1 = ∣ a 11 ⋯ a 1 m ⋮ ⋮ a m 1 ⋯ a m m ∣ D_{1} = \begin{vmatrix} a_{11} & \cdots & a_{1m}\\ \vdots & & \vdots\\ a_{m1} & \cdots & a_{mm} \end{vmatrix} D1= a11am1a1mamm 可能不为 0 0 0,其他的子式全为 0 0 0,所以行列式的值等于 D 1 D_{1} D1乘它的代数余子式,即

D = D 1 ( − 1 ) ( 1 + 2 + ⋯ + m ) + ( 1 + 2 + ⋯ + m ) ∣ b 11 ⋯ b 1 n ⋮ ⋮ b n 1 ⋯ b n n ∣ = ∣ a 11 ⋯ a 1 m ⋮ ⋮ a m 1 ⋯ a m m ∣ ∣ b 11 ⋯ b 1 n ⋮ ⋮ b n 1 ⋯ b n n ∣ D= D_{1}(-1)^{(1 + 2 + \cdots + m) + (1 + 2 + \cdots + m)} \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix}= \begin{vmatrix} a_{11} & \cdots & a_{1m}\\ \vdots & & \vdots\\ a_{m1} & \cdots & a_{mm} \end{vmatrix} \begin{vmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{vmatrix} D=D1(1)(1+2++m)+(1+2++m) b11bn1b1nbnn = a11am1a1mamm b11bn1b1nbnn


第五节|克拉默法则

克拉默法则
  • 如果含有 n n n个方程的 n n n元线性方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2                         ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n (1) \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n} \end{cases} \tag{1} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2                       an1x1+an2x2++annxn=bn(1)

  • 其系数行列式

D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ ≠ 0 D= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} \neq 0 D= a11a21an1a12a22an2a1na2nann =0

  • 则线性方程组( 1 1 1)有唯一解,且其解可表示为

x 1 = D 1 D , x 2 = D 2 D , ⋯   , x n = D n D (2) x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} = \frac{D_{n}}{D} \tag{2} x1=DD1,x2=DD2,,xn=DDn(2)

D j = ∣ a 11 ⋯ a 1 , j − 1 b 1 a 1 , j + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , j − 1 b n a n , j + 1 ⋯ a n n ∣ ,      j = 1 , 2 , ⋯   , n D_{j}= \begin{vmatrix} a_{11} & \cdots & a_{1,j - 1} & b_{1} & a_{1,j + 1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j - 1} & b_{n} & a_{n,j + 1} & \cdots & a_{nn} \end{vmatrix} , \ \ \ \ j = 1,2,\cdots,n Dj= a11an1a1,j1an,j1b1bna1,j+1an,j+1a1nann ,    j=1,2,,n

  • 证明

D j = ∑ k = 1 n b k A k j D_{j}= \sum_{k = 1}^{n}b_{k}A_{kj} Dj=k=1nbkAkj

    • 首先证明由( 2 2 2)式确定的 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn为线性方程组(1)的解,将 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn代入线性方程组(1)的第 i i i个方程( i = 1 , 2 , ⋯   , n i = 1,2,\cdots,n i=1,2,,n

a i 1 x 1 + a i 2 x 2 + ⋯ + a i n x n = ∑ j = 1 n a i j x j = ∑ j = 1 n a i j D j D = 1 D ∑ j = 1 n a i j ( ∑ k = 1 n b k A k j ) = 1 D ∑ k = 1 n b k ( ∑ j = 1 n a i j A k j ) = b i D ∑ j = 1 n a i j A i j = b i D ⋅ D = b i \begin{aligned} a_{i1}x_{1} + a_{i2}x_{2} + \cdots + a_{in}x_{n} &= \sum_{j = 1}^{n}a_{ij}x_{j}= \sum_{j = 1}^{n}a_{ij}\frac{D_{j}}{D} \\ &= \frac{1}{D}\sum_{j = 1}^{n}a_{ij}(\sum_{k = 1}^{n}b_{k}A_{kj}) \\ &= \frac{1}{D}\sum_{k = 1}^{n}b_{k}(\sum_{j = 1}^{n}a_{ij}A_{kj}) \\ &= \frac{b_{i}}{D}\sum_{j = 1}{n}a_{ij}A_{ij} \\ &= \frac{b_{i}}{D} \cdot D \\ &= b_{i} \end{aligned} ai1x1+ai2x2++ainxn=j=1naijxj=j=1naijDDj=D1j=1naij(k=1nbkAkj)=D1k=1nbk(j=1naijAkj)=Dbij=1naijAij=DbiD=bi

    • x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn为线性方程组( 1 1 1)的解
    • 然后证明解的唯一性,若 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn为线性方程组( 1 1 1)的解,用行列式 D D D的第 j j j列各元素的代数余子式 A 1 j , A 2 j , ⋯   , A n j A_{1j},A_{2j},\cdots,A_{nj} A1j,A2j,,Anj分别乘以线性方程组( 1 1 1)的第 1 1 1个,第 2 2 2个, ⋯ \cdots ,第 n n n个方程并相加得

( ∑ k = 1 n a k 1 A k j ) x 1 + ⋯ + ( ∑ k = 1 n a k j A k j ) x j + ⋯ + ( ∑ k = 1 n a k n A k j ) x n = ∑ k = 1 n b k A k j (\sum_{k = 1}{n}a_{k1}A_{kj})x_{1} + \cdots + (\sum_{k = 1}^{n}a_{kj}A_{kj})x_{j} + \cdots + (\sum_{k = 1}^{n}a_{kn}A_{kj})x_{n} = \sum_{k = 1}^{n}b_{k}A_{kj} (k=1nak1Akj)x1++(k=1nakjAkj)xj++(k=1naknAkj)xn=k=1nbkAkj

D x j = D j ,      j = 1 , 2 , ⋯   , n Dx_{j} = D_{j} , \ \ \ \ j = 1,2,\cdots,n Dxj=Dj,    j=1,2,,n

    • 由于 D ≠ 0 D \neq 0 D=0 x j = D j D ( j = 1 , 2 , ⋯   , n ) x_{j} = \frac{D_{j}}{D}(j = 1,2,\cdots,n) xj=DDj(j=1,2,,n),从而线性方程组( 1 1 1)的解 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn满足( 2 2 2

  • 31
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者: 同济大学数学系 出版社: 高等教育出版社 副标题: 工程数学 出版年: 2007.5 页数: 164 定价: 12.10元 装帧: 平装 ISBN: 9787040212181 内容简介 · · · · · · 本书是同济大学数学系编《线性代数》的第五版,依据工科类本科线性代数课程教学基本要求(以下简称教学基本要求)修订而成。此次修订参照近年来线性代数课程及教材建设的经验和成果,对原有内容作了全面的审视与修改,修订的主导思想是:在满足教学基本要求的前提下,适当降低理论推导的要求,注重解决问题的矩阵方法。为此,对书中某些理论的证明改为小字排印,并调整了部分例题与习题。 本书内容分为:行列式、矩阵及其运算、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换等六章,各章均配有一定数量的习题,书末附有习题答案。其中一至五章(除用小字排印的内容外)符合教学基本要求,教学时数约34学时。一至五章中用小字排印的内容供读者选读,第六章较多地带有理科的色彩,供对数学要求较高的专业选用。 本书可供高等院校工程类各专业使用,也可供自学者和科技工作者阅读。 目录 · · · · · · 第一章 行列式 §1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n阶行列式的定义 §4 对换 §5 行列式的性质 §6 行列式按行(列)展开 §7 克拉默法则 习题一 第二章 矩阵及其运算 §1 矩阵 §2 矩阵的运算 §3 逆矩阵 §4 矩阵分块法 习题二 第三章 矩阵的初等变换与线性方程组 §1 矩阵的初等变换 §2 矩阵的秩 §3 线性方程组的解 习题三 第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构 §5 向量空间 习题四 第五章 相似矩阵及二次型 §1 向量的内积、长度及正交性 §2 方阵的特征值与特征向量 §3 相似矩阵 §4 对称矩阵的对角化 §5 二次型及其标准形 §6 用配方法化二次型成标准形 §7 正定二次型 习题五 第六章 线性空间与线性变换 §1 线性空间的定义与性质 §2 维数、基与坐标 §3 基变换与坐标变换 §4 线性变换 §5 线性变换的矩阵表示式 习题六 习题答案

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值