基于阿里云DATAWORKS整理数据模型概念

本文介绍了阿里云DATAWORKS升级后的新特性,重点阐述了数据模型的三个层次——概念模型、逻辑模型和物理模型,以及它们在数据仓库设计中的作用和区别。数据模型是业务与技术沟通的桥梁,对于数据仓库的建设和实施至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子

年底这两个月阿里云的dataworks进行了全面升级,很多细节有了不小的变化,感觉结构更加清晰了。
例如建表这个页面:
在这里插入图片描述
现在可以在这里配置数据仓库表的层级,主题层级比较好理解,就是主题表的分类。而下边的物理层级应该就是指ODS,DM,DW这类分级,物理分类没有太理解,会在后边进行补充。

下面是基于这个管理界面补充一下数据模型的相关知识。

数据模型

数据模型是指实体、属性、实体之间的关系对业务概念和逻辑规则进行统一的定义,命名和编码,主要描述企业的信息需求和业务规则,是业务人员和开发人员沟通的语言,是数据仓库设计工作的第一步。数据模型可以划分为概念模型、逻辑模型、物理模型。

概念模型

从定义上来说,概念模型是最高层次的数据模型,反映了数据仓库的主要主题和重要业务之间的关系。一般来说,在进行数据仓库系统设计和开发之前,设计开发人员和业务人员已经对概念模型达成了共识,因为概念模型反映的是核心的业务问题。概念模型设计步骤如下:

从业务需求中提取重要的业务数据主题,包括对业务数据主题的详细解释;
从业务数据主题的基础上进行数据主题域的划分,包括对数据主题域的详细解释;
划分主题域概念模型:根据数据主题域的划分,细化内部的组织结构和业务关系。
概念模型建模的流程大致可以划分成如下几个部分:通过对业务系统的详细说明,进行数据的梳理,列出数据主题详细的清单,并对每个数据主题都作出详细的解释,然后经过归纳、分类,整理成各个数据主题域,列出每个数据主题域包含哪些部分,并对每个数据主题域作出详细解释,最后划分成主题域概念模型。

逻辑模型

从定义上讲,逻辑模型是以概念模型为基础,对概念模型的进一步细化、分解。

### 阿里云 DataWorks 中使用 Spark 进行数据分析或处理 在阿里云 DataWorks 平台上,Spark 是一种强大的分布式计算框架,适用于大规模数据的批处理和流处理场景。以下是关于如何在 DataWorks 中配置并运行 Spark 作业的具体说明: #### 1. 创建 Spark 工程 通过 DataWorks 的项目管理功能创建一个新的工程,并选择支持 Spark 计算引擎的工作空间。这一步骤确保后续开发环境能够调用 MaxCompute 提供的 Spark 能力[^3]。 #### 2. 编写 Spark SQL 或 Scala/Pyspark 代码 DataWorks 支持多种编程方式来编写 Spark 应用程序,包括但不限于: - **Spark SQL**: 可用于结构化查询操作。 - **Scala 和 PySpark**: 更灵活的方式,适合复杂逻辑处理。 以下是一个简单的 Spark SQL 查询示例,展示如何读取表中的数据并执行聚合运算: ```sql SELECT category, COUNT(*) as total_count FROM sales_data GROUP BY category; ``` 如果需要更复杂的自定义函数,则可以采用 Scala 编写的 Pyspark 示例如下所示: ```scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().appName("Example").getOrCreate() val data = spark.read.format("csv").option("header", "true").load("path/to/data") data.createOrReplaceTempView("sales_view") val result = spark.sql("SELECT category, SUM(amount) FROM sales_view GROUP BY category") result.show() ``` #### 3. 设置依赖关系与调度参数 为了使任务自动化,在节点属性设置界面指定上游依赖项以及触发条件;同时调整资源配额如 CPU 核数、内存大小等以满足实际需求[^1]。 #### 4. 执行调试及优化性能 完成上述准备工作之后即可提交至集群运行测试版本。期间注意观察日志输出以便及时发现潜在错误或者瓶颈所在位置进而采取相应措施加以改进[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值