一、什么是最小二乘法
最小二乘法(Least Squares Method)是一种数学优化技术,常用于拟合数据和估计参数。它的主要目标是找到一个函数,使其预测值与观测值之间的残差平方和最小化。
在最小二乘法中,通常考虑一个具有nn个数据点的数据集,每个数据点包含一个自变量,和一个对应的因变量。假设我们有一个模型函数,其中θ是模型的参数。我们希望通过调整参数θ来使模型的预测值尽可能接近观测值。
最小二乘法通过最小化残差平方和来确定最佳参数θ。残差是观测值与模型预测值之间的差异。通过定义残差,最小二乘法的目标是找到参数θ,使得残差平方和最小化,即:
通过求解这个最小化问题,我们可以得到最佳的参数θ,使得模型的拟合效果最好。最小二乘法适用于许多不同的问题,如线性回归、多项式拟合等,是统计学和机器学习中常用的技术之一。
二、公式推导
假设数据点为 ,使用如下一次函数去拟合:
对于,采用上述函数计算出的结果记为,即:
定义差距:
三、代码实现
普通代码实现:
向量实现
四、决定系数R²
代码实现
代码地址:https://gitee.com/feng-cai/LinearFunctionFitting.Demo