信号系统笔记(二)连续系统的时域分析

2 连续系统的时域分析

  从这一章开始,知识变得难起来了,学着有点让人头秃,不过慢慢来,一步一个脚印。

2.1 连续系统的响应

2.1.1 连续系统建立微分方程

  根据之前提到的知识,系统,本质是可以理解成一个“函数”,给定一个输入,然后得到输出。函数体一般为微分方程,如电路图:
微分方程
在这里插入图片描述
该方程为二阶线性微分方程,当然,不只是,电路图,其他系统也可以用微分方程来描述:
在这里插入图片描述

2.1.2 微分方程的模拟框图

  我目前觉得,引入微分方程的模拟框图,是为了更加明确输入跟输出。二阶线性微分方程的一般形式如下:
y ′ ′ ( t ) + a 1 y ′ ( t ) + a 0 y ( t ) = f ( t ) y''(t)+a_1y'(t)+a_0y(t)=f(t) y(t)+a1y(t)+a0y(t)=f(t)
其中 f ( t ) f(t) f(t)为系统的输入, y ( t ) y(t) y(t)为系统的输出。方程左边为系统的模型(类比于函数体),右边为输入函数(类比于函数输入值)。
  可以由三种基本运算来描述一个系:相加、积分、数乘,分别对应框图中的,加法器、积分器、数乘器。
在这里插入图片描述
在这里插入图片描述
以下是实例解释微分方程框图的画法,如系统: y ′ ′ ( t ) + a y ′ ( t ) + b y ( t ) = f ( t ) y''(t)+ay'(t)+by(t)=f(t) y(t)+ay(t)+by(t)=f(t),化为框图的步骤:

  1. 将方程变形为: y ′ ′ ( t ) = f ( t ) − a y ′ ( t ) − b y ( t ) y''(t)=f(t)-ay'(t)-by(t) y(t)=f(t)ay(t)by(t)
  2. 画出两个积分器:
    在这里插入图片描述
  3. 然后按照第一步的方程拼接
    在这里插入图片描述
      当输入中也含有微分的情况下,如系统: y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 4 f ′ ( t ) + f ( t ) y''(t)+3y'(t)+2y(t)=4f'(t)+f(t) y(t)+3y(t)+2y(t)=4f(t)+f(t),画框图需要引进辅助函数: x ′ ′ ( t ) + 3 x ′ ( t ) + 2 x ( t ) = f ( t ) x''(t)+3x'(t)+2x(t)=f(t) x(t)+3x(t)+2x(t)=f(t),这个函数的系统跟上面那个系统一样,只不过输入为 f ( t ) f(t) f(t),输出为 x ( t ) x(t) x(t)
      由于是LTI系统,因此系统具线性,即: f ( t ) → x ( t ) f(t) \to x(t) f(t)x(t) f ′ ( t ) → x ′ ( t ) f'(t) \to x'(t) f(t)x(t) f ( t ) + 4 f ′ ( t ) → x ( t ) + x f ′ ( t ) = y ( t ) f(t)+4f'(t) \to x(t)+xf'(t)=y(t) f(t)+4f(t)x(t)+xf(t)=y(t)
    在这里插入图片描述
      当然,框图跟方程可以互相转换,如下框图:
    在这里插入图片描述
    可以转换为方程: y ′ ′ ( t ) + 2 y ′ ( t ) + 3 y ( t ) = 3 f ( t ) + 4 f ′ ( t ) y''(t)+2y'(t)+3y(t)=3f(t)+4f'(t) y(t)+2y(t)+3y(t)=3f(t)+4f(t)

2.1.3 微分方程的经典解法

  关于微分方程的经典解法,在学高等数学的时候就很懵逼,不知其原理只知其解法步骤,因为只知道解法步骤就足够了。一般来说,解法如下图所示:
微分方程的解法
  其中,二阶线性微分方程的解法如下:
在这里插入图片描述

2.1.4 连续系统的初始值

  初始值 n n n阶系统在 t = 0 t=0 t=0时接入系统的时候,其响应在 t = 0 + t=0_+ t=0+时刻的值,即 y ( j ) ( 0 + ) ( j = 0 , 1 , . . . , n − 1 ) y^{(j)}(0_+)(j=0,1,...,n-1) y(j)(0+)(j=0,1,...,n1)
  初始状态是指系统在激励未接入的 t = 0 − t=0_- t=0时刻的响应值 y ( j ) ( 0 − ) y^{(j)}(0_-) y(j)(0),这个值反映了系统的历史情况,与激励无关系。
  一般来说,需要从初始状态求得初始值,即: y ( j ) ( 0 − ) → y ( j ) ( 0 + ) y^{(j)}(0_-) \to y^{(j)}(0_+) y(j)(0)y(j)(0+)
例如:
在这里插入图片描述
  带入输入信号得到: y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 δ ( t ) + 6 ε ( t ) y''(t)+3y'(t)+2y(t)=2\delta(t)+6\varepsilon(t) y(t)+3y(t)+2y(t)=2δ(t)+6ε(t),观察此方程,右边含有 δ ( t ) \delta(t) δ(t),说明 y ′ ′ ( t ) y''(t) y(t)中含有 δ ( t ) \delta(t) δ(t),因为如果 y ′ ( t ) y'(t) y(t)含有 δ ( t ) \delta(t) δ(t)的话,那么 y ′ ′ ( t ) y''(t) y(t)中必含有 δ ′ ( t ) \delta'(t) δ(t),但是等式右边不含有 δ ′ ( t ) \delta'(t) δ(t)
  PS:这里可能会考虑到为什么等式右边没有对应到 y ( t ) y(t) y(t) y ′ ′ ( t ) y''(t) y(t)必含有 δ ( t ) \delta(t) δ(t),则: y ′ ( t ) y'(t) y(t)必含有 ε ( t ) \varepsilon(t) ε(t),那么 y ( t ) y(t) y(t)必含有 ε ( t ) \varepsilon(t) ε(t)的积分,这个在等式右边没有体现,我没想清楚为什么。
  按照上面的思路, y ′ ′ ( t ) y''(t) y(t)中含有 δ ( t ) \delta(t) δ(t) y ′ ( t ) y'(t) y(t)含有 ε ( t ) \varepsilon(t) ε(t),因此有: y ′ ( 0 − ) ≠ y ′ ( 0 + ) y'(0_-) \neq y'(0_+) y(0)=y(0+) y ( 0 − ) = y ( 0 + ) = 2 y(0_-)=y(0_+)=2 y(0)=y(0+)=2。对等式两边同时求 0 − → 0 + 0_-\to0_+ 00+的积分得到:
∫ 0 − 0 + y ′ ′ ( t ) d t + 3 ∫ 0 − 0 + y ′ ( t ) d t + 2 ∫ 0 − 0 + y ( t ) d t = 2 ∫ 0 − 0 + δ ( t ) d t + 6 ∫ 0 − 0 + ε ( t ) d t \int_{0_-}^{0_+}y''(t){\rm d}t+3\int_{0_-}^{0_+}y'(t){\rm d}t+2\int_{0_-}^{0_+}y(t){\rm d}t=2\int_{0_-}^{0_+}\delta(t){\rm d}t+6\int_{0_-}^{0_+}\varepsilon(t){\rm d}t 00+y(t)dt+300+y(t)dt+200+y(t)dt=200+δ(t)dt+600+ε(t)dt
y ′ ( 0 + ) − y ′ ( 0 − ) = 2 y'(0_+)-y'(0_-)=2 y(0+)y(0)=2
因此得到: y ( 0 + ) = 2 , y ′ ( 0 + ) = 2 y(0_+)=2,y'(0_+)=2 y(0+)=2,y(0+)=2
结论:微分方程等号右端含有 δ ( t ) \delta(t) δ(t) 时 , 仅在等号左端 y ( t ) y(t) y(t)的最高阶导数中含有 δ ( t ) \delta(t) δ(t) , 则 y ( t ) y(t) y(t) 的次高阶跃变 , 其余连续;若右端不含冲激函数 , 则不会跃变。

2.1.5 零输入响应

在这里插入图片描述
例题:
在这里插入图片描述
  该系统为零输入响应,则有: y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 0 y''(t)+3y'(t)+2y(t)=0 y(t)+3y(t)+2y(t)=0
y ( 0 − ) = y ( 0 + ) = 2 , y ′ ( 0 − ) = y ′ ( 0 + ) = 0 y(0_-)=y(0_+)=2,y'(0_-)=y'(0_+)=0 y(0)=y(0+)=2,y(0)=y(0+)=0
该方程是个齐次微分方程,特征方程为 r 2 + 3 r + 2 = 0 r^2+3r+2=0 r2+3r+2=0, r 1 = − 1 , r 2 = − 2 r_1=-1,r_2=-2 r1=1,r2=2。因此设定通解为: y ( t ) = C 1 e − t + C 2 e − 2 t y(t)=C_1e^{-t}+C_2e^{-2t} y(t)=C1et+C2e2t,带入值解得零输入响应为:
y ( t ) = 4 e − t − 2 e − 2 t y(t)=4e^{-t}-2e^{-2t} y(t)=4et2e2t

2.1.6 零状态响应

在这里插入图片描述
例题:
在这里插入图片描述
零输入响应跟上面一样,零状态响应求法如下,根据零状态响应的特质,可以得到: y z s ( 0 − ) = 0 , y z s ′ ( 0 − ) = 0 y_{zs}(0_-)=0,y'_{zs}(0_-)=0 yzs(0)=0,yzs(0)=0,现在要求 y z s ( 0 + ) , y z s ′ ( 0 + ) y_{zs}(0_+),y'_{zs}(0_+) yzs(0+),yzs(0+)。原微分方程化为:
y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 δ ( t ) + 6 ε ( t ) y''(t)+3y'(t)+2y(t)=2\delta(t)+6\varepsilon(t) y(t)+3y(t)+2y(t)=2δ(t)+6ε(t)
由匹配法知(见2.1.4节): y z s ( 0 − ) = y z s ( 0 + ) = 0 , y z s ′ ( 0 + ) = 2 y_{zs}(0_-)=y_{zs}(0_+)=0,y'_{zs}(0_+)=2 yzs(0)=yzs(0+)=0,yzs(0+)=2
t > 0 t>0 t>0时, y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 6 y''(t)+3y'(t)+2y(t)=6 y(t)+3y(t)+2y(t)=6
齐次方程的通解为: y z s h ( t ) = C 1 e − t + C 2 e − 2 t y_{zsh}(t)=C_1e^{-t}+C_2e^{-2t} yzsh(t)=C1et+C2e2t解得: y z s h ( t ) = − 4 e − t + e − 2 t y_{zsh}(t)=-4e^{-t}+e^{-2t} yzsh(t)=4et+e2t
设定特解为: y z s p ( t ) = p y_{zsp}(t)=p yzsp(t)=p,带入方程解得 p = 3 p=3 p=3解得零状态响应为:
y z s ( t ) = − 4 e − t + e − 2 t + 3 y_{zs}(t)=-4e^{-t}+e^{-2t}+3 yzs(t)=4et+e2t+3

2.1.7 响应分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 冲激响应与阶跃响应

2.2.1 冲激响应及其求法

  冲激响应是由单位冲激函数 δ ( t ) \delta(t) δ(t)所引起的零状态响应,记为 h ( t ) h(t) h(t)
   h ( t ) h(t) h(t)隐含的条件:
f ( t ) = δ ( t ) f(t)=\delta(t) f(t)=δ(t)
h ( 0 − ) = h ′ ( 0 − ) = 0 h(0_-)=h'(0_-)=0 h(0)=h(0)=0
其中第二个条件是所有二阶零状态响应都成立。
在这里插入图片描述
例题如下:
在这里插入图片描述
先求其系统的方程:
   x ′ ′ ( t ) = f ( t ) − 2 x ( t ) − 3 x ′ ( t ) → x ′ ′ ( t ) + 3 x ′ ( t ) + 2 x ( t ) = f ( t ) x''(t)=f(t)-2x(t)-3x'(t) \to x''(t)+3x'(t)+2x(t)=f(t) x(t)=f(t)2x(t)3x(t)x(t)+3x(t)+2x(t)=f(t),系统方程为:
y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = − f ′ ( t ) + 2 f ( t ) y''(t)+3y'(t)+2y(t)=-f'(t)+2f(t) y(t)+3y(t)+2y(t)=f(t)+2f(t)
h 1 ′ ′ ( t ) + 3 h 1 ′ ( t ) + 2 h 1 ( t ) = δ ( t ) h_1''(t)+3h_1'(t)+2h_1(t)=\delta(t) h1(t)+3h1(t)+2h1(t)=δ(t),由于二阶线性零状态响应初始条件有:
h ( 0 − ) = h ′ ( 0 − ) = 0 h(0_-)=h'(0_-)=0 h(0)=h(0)=0
由系数匹配法得到: h ′ ( 0 − ) ≠ h ′ ( 0 + ) , h ( 0 − ) = h ( 0 + ) = 0 h'(0_-)\neq h'(0_+),h(0_-)=h(0_+)=0 h(0)=h(0+),h(0)=h(0+)=0
两端从 0 − → 0 + 0_- \to 0_+ 00+积分得到:
∫ 0 − 0 + h 1 ′ ′ ( t ) + 3 ∫ 0 − 0 + h 1 ′ ( t ) + 2 ∫ 0 − 0 + h 1 ( t ) = ∫ 0 − 0 + δ ( t ) \int_{0_-}^{0_+}h_1''(t)+3\int_{0_-}^{0_+}h_1'(t)+2\int_{0_-}^{0_+}h_1(t)=\int_{0_-}^{0_+}\delta(t) 00+h1(t)+300+h1(t)+200+h1(t)=00+δ(t)
h 1 ′ ( 0 + ) − h 1 ′ ( 0 − ) = 1 h'_1(0_+)-h'_1(0_-)=1 h1(0+)h1(0)=1
因此得到初始值: h ( 0 + ) = 0 , h ′ ( 0 + ) = 1 h(0_+)=0,h'(0_+)=1 h(0+)=0,h(0+)=1
t > 0 t>0 t>0时 ,方程化为: h 1 ′ ′ ( t ) + 3 h 1 ′ ( t ) + 2 h 1 ( t ) = 0 h_1''(t)+3h_1'(t)+2h_1(t)=0 h1(t)+3h1(t)+2h1(t)=0,其特征跟分别为 r 1 = − 1 , r 2 = − 2 r_1=-1,r_2=-2 r1=1,r2=2,因此设定解为 h 1 ( t ) = C 1 e − 1 t + C 2 e − 2 t h_1(t)=C_1e^{-1t}+C_2e^{-2t} h1(t)=C1e1t+C2e2t,带入初始值得到: h 1 ( t ) = ( e − 1 t − 2 e − 2 t ) ε ( t ) h_1(t)=(e^{-1t}-2e^{-2t})\varepsilon(t) h1(t)=(e1t2e2t)ε(t)
因此 − f ′ ( t ) + 2 f ( t ) → − h 1 ′ ( t ) + 2 h 1 ( t ) = ( 3 e − 1 t − 4 e − 2 t ) ε ( t ) -f'(t)+2f(t)\to -h_1'(t)+2h_1(t)=(3e^{-1t}-4e^{-2t})\varepsilon(t) f(t)+2f(t)h1(t)+2h1(t)=(3e1t4e2t)ε(t)

2.2.2 阶跃响应及其求法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 卷积积分

2.3.1 信号的时域分解

   p ( t ) p(t) p(t)的面积为 1 1 1,宽度为 Δ \Delta Δ,因此高度为 1 Δ \frac{1}{\Delta} Δ1。当 Δ → 0 \Delta \to 0 Δ0 p ( t ) → δ ( t ) p(t) \to \delta(t) p(t)δ(t)
在这里插入图片描述
在这里插入图片描述

2.3.2 卷积公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
解: f ( t ) = f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( τ ) f 2 ( t − τ ) d τ = ∫ − ∞ ∞ e − t ε ( τ ) ε ( t − τ ) d τ f(t)=f_1(t)*f_2(t)=\int_{-\infty}^{\infty}f_1(\tau)f_2(t-\tau) {\rm d}\tau=\int_{-\infty}^{\infty}e^{-t}\varepsilon(\tau)\varepsilon(t-\tau) {\rm d}\tau f(t)=f1(t)f2(t)=f1(τ)f2(tτ)dτ=etε(τ)ε(tτ)dτ
由于单位阶跃函数在小于零时为零,因此该积分只在 τ > 0 \tau >0 τ>0 τ < t \tau < t τ<t有取值(这里有个隐含的含义,就是 t > 0 t>0 t>0),且在这个范围内 ε \varepsilon ε的值取 1 1 1,积分限变为 0 → t 0 \to t 0t
∫ 0 t e − t ε ( τ ) ε ( t − τ ) d τ = ∫ 0 t e − t d τ ε ( t ) = [ − e − τ ] 0 t ε ( t ) = ( 1 − e − t ) ε ( t ) \int_0^te^{-t}\varepsilon(\tau)\varepsilon(t-\tau) {\rm d}\tau=\int_0^te^{-t} {\rm d}\tau\varepsilon(t)=[-e^{-\tau}]_{0}^{t}\varepsilon(t)=(1-e^{-t})\varepsilon(t) 0tetε(τ)ε(tτ)dτ=0tetdτε(t)=[eτ]0tε(t)=(1et)ε(t)

2.3.3 卷积积分的图解法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.4 卷积积分的代数性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.5 卷积积分的微积分性质

在这里插入图片描述

2.3.6 卷积积分的时移性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
函数 f 1 ( t ) f_1(t) f1(t)可以表示为两个阶跃函数的差: f 1 ( t ) = ε ( t ) − ε ( t − 2 ) f_1(t)=\varepsilon(t)-\varepsilon(t-2) f1(t)=ε(t)ε(t2)
f 1 ( t ) ∗ f 2 ( t ) = ( ε ( t − 2 ) − ε ( t ) ) ∗ f 2 ( t ) f_1(t)*f_2(t)=(\varepsilon(t-2)-\varepsilon(t))*f_2(t) f1(t)f2(t)=(ε(t2)ε(t))f2(t)
根据分配率得到:
ε ( t ) ∗ f 2 ( t ) − ε ( t ) ∗ f 2 ( t − 2 ) \varepsilon(t)*f_2(t)-\varepsilon(t)*f_2(t-2) ε(t)f2(t)ε(t)f2(t2)
其中:
ε ( t ) ∗ f 2 ( t ) = f 2 − 1 ( t ) = ( 1 − e − t ) ε ( t ) \varepsilon(t)*f_2(t)=f_2^{-1}(t)=(1-e^{-t})\varepsilon(t) ε(t)f2(t)=f21(t)=(1et)ε(t)
f 2 − 1 ( t ) f_2^{-1}(t) f21(t) f 2 ( t ) f_2(t) f2(t)的积分,这里我有点不明白,感觉积分应该为 ( C − e − t ) (C-e^{-t}) (Cet),C为任意常数,而不是 ( 1 − e − t ) (1-e^{-t}) (1et),说明一定有初始条件 f 2 − 1 ( 0 ) = 0 f_2^{-1}(0)=0 f21(0)=0才能使得 C = 1 C=1 C=1,我认为这里可以这样思考,积分代表函数图像与坐标轴围成的面积,当 t < 0 t<0 t<0的时候函数取值为0,因此当 t = 0 t=0 t=0时,函数与坐标轴围成的面积也为 0 0 0
由卷积的时移特性得到:
ε ( t − 2 ) ∗ f 2 ( t ) = ( 1 − e − ( t − 2 ) ) ε ( t − 2 ) \varepsilon(t-2)*f_2(t)=(1-e^{-(t-2)})\varepsilon(t-2) ε(t2)f2(t)=(1e(t2))ε(t2)
最终得到:
f 1 ( t ) ∗ f 2 ( t ) = ( 1 − e − t ) ε ( t ) − ( 1 − e − ( t − 2 ) ) ε ( t − 2 ) f_1(t)*f_2(t)=(1-e^{-t})\varepsilon(t)-(1-e^{-(t-2)})\varepsilon(t-2) f1(t)f2(t)=(1et)ε(t)(1e(t2))ε(t2)

2.3.7 常用的卷积积分公式

在这里插入图片描述
在这里插入图片描述

2.3.8 用梳状函数卷积产生周期信号

在这里插入图片描述
这个产生周期信号,在后面的数字信号处理会涉及到,公式 f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t)*\delta(t-t_0)=f(t-t_0) f(t)δ(tt0)=f(tt0),相当于把 f ( t ) f(t) f(t)向左平移了 t 0 t_0 t0个单位。 δ T ( t ) \delta_T(t) δT(t)是无数个周期为 T T T δ \delta δ,因此跟 δ T ( t ) \delta_T(t) δT(t)卷积自然就变成了周期函数。
在这里插入图片描述

2.3.9 矩形脉冲的卷积产生三角形和梯形脉冲

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 相关函数

2.4.1 互相关和自相关函数的定义

在这里插入图片描述
在这里插入图片描述
下面是相关函数的应用
在这里插入图片描述
用这个例子来理解相关函数中这个“相关”的含义,雷达发射的信号如上面的transmitted pulses f 1 ( t ) f_1(t) f1(t),接收的信号为received pulses f 2 ( t ) f_2(t) f2(t),相关函数为 ∫ − ∞ ∞ f 1 ( t ) ∗ f 2 ( t − τ ) \int_{-\infty}^{\infty}f_1(t)*f_2(t-\tau) f1(t)f2(tτ)得到的是一个关于 τ \tau τ的函数,相关函数最大的时候得到的 τ \tau τ值就为雷达信号从发出到收到的时间间隔。

2.4.2 卷积与相关的比较

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 连续系统的微分算子描述

2.5.1 微分算子P的定义

在这里插入图片描述
在这里插入图片描述

2.5.2 微分算子P的性质

在这里插入图片描述
正幂多项式就是微分多项式,负幂指的积分。
在这里插入图片描述

2.5.3 传输算子 H ( P ) H(P) H(P)

  为了更简单描述系统方程的结构,引入了传输算子:
在这里插入图片描述
在这里插入图片描述

2.6 总结

  这一章主要讲了连续时不变系统(LTI)的系统微分方程表示和解法,以及基本信号(冲激信号、阶跃信号)的响应。之后讲了信号在时域上的分解(卷积),引出了卷积积分以及相关函数,最后定义了微分算子 P P P以及传输算子 H ( P ) H(P) H(P)来更简便的描述系统的方程。

  • 16
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
连续系统时域分析是信号与系统学习中的重要部分。时域分析研究的是信号在时间域内的变化规律,常用的分析方法包括冲激响应法、单位阶跃响应法和相应方程法。 1. 冲激响应法 冲激响应法是一种基于系统输入信号的冲激函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个冲激序列的加权和,然后计算出系统对每个冲激的响应,得到系统的冲激响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为冲激序列的加权和,从而得到系统对任何输入信号的响应。 2. 单位阶跃响应法 单位阶跃响应法是一种基于系统输入信号的单位阶跃函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个单位阶跃函数的加权和,然后计算出系统对每个单位阶跃函数的响应,得到系统的单位阶跃响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为单位阶跃函数的加权和,从而得到系统对任何输入信号的响应。 3. 相应方程法 相应方程法是一种基于系统微分方程的解析解来分析系统时域特性的方法。具体来说,根据系统微分方程的特性,可以得到系统的传递函数,然后通过拉普拉斯变换将输入信号和传递函数变换到频域内,最终通过反变换得到系统的时域响应。 以上三种方法都是分析连续系统时域特性的重要方法,各自适用于不同的情况。掌握这些方法可以帮助我们更好地理解和分析连续系统的时域特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值