信号与系统->系统的时域分析

基本概念和公式等

零输入响应
零状态响应
一阶前向差分:
Δ f ( k ) = f ( k + 1 ) − f ( k ) \Delta f(\mathbf{k})=f(\mathbf{k}+\mathbf{1})-f(\mathbf{k}) Δf(k)=f(k+1)f(k)
二阶差分
∇ 2 f ( k ) = f ( k ) − 2 f ( k − 1 ) + f ( k − 2 ) \nabla^{2} f(\mathbf{k})=f(\mathbf{k})-2 f(\mathbf{k}-1)+f(\mathbf{k}-2) 2f(k)=f(k)2f(k1)+f(k2)
卷积积分
f ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f(t)=\int_{-\infty}^{+\infty} f_{1}(\tau) f_{2}(t-\tau) \mathrm{d} \tau f(t)=+f1(τ)f2(tτ)dτ

卷积积分的性质
代数,微积分,移位
d n d t n [ f 1 ( t ) ∗ f 2 ( t ) ] = d n f 1 ( t ) d t n ∗ f 2 ( t ) = f 2 ( t ) ∗ d n f 2 ( t ) d t n \frac{d^{n}}{d t^{n}}\left[f_{1}(t) * f_{2}(t)\right]=\frac{d^{n} f_{1}(t)}{d t^{n}} * f_{2}(t)=f_{2}(t) * \frac{d^{n} f_{2}(t)}{d t^{n}} dtndn[f1(t)f2(t)]=dtndnf1(t)f2(t)=f2(t)dtndnf2(t)
∫ − ∞ t [ f 1 ( τ ) ∗ f 2 ( τ ) ] d τ = [ ∫ − ∞ t f 1 ( τ ) d τ ] ∗ f 2 ( t ) = f 1 ( t ) ∗ [ ∫ − ∞ t f 2 ( τ ) d τ ] \int_{-\infty}^{t}\left[f_{1}(\tau) * f_{2}(\tau)\right] d \tau=\left[\int_{-\infty}^{t} f_{1}(\tau) d \tau\right] * f_{2}(t)=f_{1}(t) *\left[\int_{-\infty}^{t} f_{2}(\tau) d \tau\right] t[f1(τ)f2(τ)]dτ=[tf1(τ)dτ]f2(t)=f1(t)[tf2(τ)dτ]
f 1 ( − ∞ ) = f 2 ( − ∞ ) = 0 f_{1}(-\infty)=f_{2}(-\infty)=0 f1()=f2()=0 的前提下,
f 1 ( t ) ∗ f 2 ( t ) = f 1 ′ ( t ) ∗ f 2 ( − 1 ) ( t ) f_{1}(t) * f_{2}(t)=f_{1}^{\prime}(t) * f_{2}^{(-1)}(t) f1(t)f2(t)=f1(t)f2(1)(t)
上面的前提是必要的,反例是符号函数和冲激函数做卷积。
f 1 ( t − t 1 ) ∗ f 2 ( t − t 2 ) = f ( t − t 1 − t 2 ) f_{1}\left(t-t_{1}\right) * f_{2}\left(t-t_{2}\right)=f\left(t-t_{1}-t_{2}\right) f1(tt1)f2(tt2)=f(tt1t2)

与冲激函数或阶跃函数的卷积
f ( t ) ∗ δ ( t ) = δ ( t ) ∗ f ( t ) = f ( t ) f(t) * \delta(t)=\delta(t) * f(t)=f(t) f(t)δ(t)=δ(t)f(t)=f(t)(把δ的t换成t-t0,则结果也换)
f ( t ) δ ( t ) = f ( 0 ) δ ( t ) ( 取 样 性 质 ) 推 理 f(t) \delta(t)=f(0) \delta(t)(取样性质)推理 f(t)δ(t)=f(0)δ(t)
f ( t ) ∗ δ ′ ( t ) = f ′ ( t ) f(t) * \delta^{\prime}(t)=f^{\prime}(t) f(t)δ(t)=f(t)(推广到n阶导也行)
f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) 推 理 f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t)推理 f(t)δ(t)=f(0)δ(t)f(0)δ(t)
f ( t ) ∗ ε ( t ) = ∫ − ∞ ∞ ε ( τ ) f ( t − τ ) d τ = ∫ − ∞ t f ( τ ) d τ f(t) * \varepsilon(t)=\int_{-\infty}^{\infty} \varepsilon(\tau) f(t-\tau) d \tau=\int_{-\infty}^{t} f(\tau) d \tau f(t)ε(t)=ε(τ)f(tτ)dτ=tf(τ)dτ
ε ( t ) ∗ ε ( t ) = t ε ( t ) \varepsilon(t) * \varepsilon(t)=t \varepsilon(t) ε(t)ε(t)=tε(t)

实能量有限函数 f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t)互相关函数
R 12 ( t ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t = ∫ − ∞ ∞ f 1 ( t + τ ) f 2 ( t ) d t R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t − τ ) f 2 ( t ) d t = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t + τ ) d t R 12 ( τ ) = R 21 ( − τ ) 0 \begin{array}{l} R_{12}(t)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t-\tau) d t=\int_{-\infty}^{\infty} f_{1}(t+\tau) f_{2}(t) d t \\ R_{21}(\tau)=\int_{-\infty}^{\infty} f_{1}(t-\tau) f_{2}(t) \mathrm{d} t=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t+\tau) \mathrm{d} t \\ \boldsymbol{R}_{12}(\tau)=\boldsymbol{R}_{21}(-\tau)_{0} \end{array} R12(t)=f1(t)f2(tτ)dt=f1(t+τ)f2(t)dtR21(τ)=f1(tτ)f2(t)dt=f1(t)f2(t+τ)dtR12(τ)=R21(τ)0
自相关函数
R ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] R(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] R(τ)=Tlim[T12T2Tf(t)f(tτ)dt]
相关与卷积的关系
R 12 ( t ) = ∫ − ∞ ∞ f 1 ( x ) f 2 ( x − t ) d x R_{12}(t)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x-t) \mathrm{d} x R12(t)=f1(x)f2(xt)dx

f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( x ) f 2 ( t − x ) d x f_{1}(t)^{*} f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(t-x) \mathrm{d} x f1(t)f2(t)=f1(x)f2(tx)dx

R 12 ( t ) = f 1 ( t ) ∗ f 2 ( − t ) ; R 21 ( t ) = f 1 ( − t ) ∗ f 2 ( t ) R_{12}(t)=f_{1}(t)^{*} f_{2}(-t) ; R_{21}(t)=f_{1}(-t)^{*} f_{2}(t) R12(t)=f1(t)f2(t);R21(t)=f1(t)f2(t)

可见, 若 f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t) 均为实偶函数, 则卷积与相关完全相同。

题型总结

零输入响应、零状态响应、全解

y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) ,  已知  y ( 0 − ) = 2 , y ′ ( 0 − ) = 0 y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=2 f^{\prime}(t)+6 f(t), \text { 已知 } y\left(0_{-}\right)=2, y^{\prime}\left(0_{-}\right)=0 y(t)+3y(t)+2y(t)=2f(t)+6f(t), 已知 y(0)=2,y(0)=0
f ( t ) = ε ( t ) , f(t)=\varepsilon(t), f(t)=ε(t), 求该系统的零输入响应和零状态响应及全解。
(1) 零输入响应 y z i ( t ) y_{z i}(t) yzi(t) 激励为 0 , 0, 0, y z i ( t ) y_{z i}(t) yzi(t) 满足
y z i ′ ′ ( t ) + 3 y z i ′ ( t ) + 2 y z i ( t ) = 0 y_{z i}^{\prime \prime}(t)+3 y_{z i}^{\prime}(t)+2 y_{z i}(t)=0 yzi(t)+3yzi(t)+2yzi(t)=0
该齐次方程的特征根为 − 1 , − 2 , -1,-2, 1,2,
y z i ( t ) = C z i 1 e − t + C z i 2 e − 2 t y z i ( 0 − ) = y z i ( 0 + ) = y ( 0 − ) = 2 y z i ′ ( 0 − ) = y z i ′ ( 0 + ) = y ′ ( 0 − ) = 0 \begin{array}{l} y_{z i}(t)=C_{z i 1} e^{-t}+C_{z i 2} e^{-2 t} \\ y_{z i}\left(0_{-}\right)=y_{z i}\left(0_{+}\right)=y\left(0_{-}\right)=2 \\ y_{z i}^{\prime}\left(0_{-}\right)=y_{z i}^{\prime}\left(0_{+}\right)=y^{\prime}\left(0_{-}\right)=0 \end{array} yzi(t)=Czi1et+Czi2e2tyzi(0)=yzi(0+)=y(0)=2yzi(0)=yzi(0+)=y(0)=0
解得系数为 C z i 1 = 4 , C z i 2 = − 2 , C_{z i 1}=4, C_{z i 2}=-2, Czi1=4,Czi2=2, 代入得
y z i ( t ) = 4 e − t − 2 e − 2 t , t ≥ 0 y_{z i}(t)=4 e^{-t}-2 e^{-2 t}, \quad t \geq 0 yzi(t)=4et2e2t,t0
(2) 零状态响应 y z s ( t ) y_{z s}(t) yzs(t) 满足
y z S ′ ′ ( t ) + 3 y z s ′ ( t ) + 2 y z s ( t ) = 2 δ ( t ) + 6 ε ˉ ( t ) y_{z S}^{\prime \prime}(t)+3 y_{z s}^{\prime}(t)+2 y_{z s}(t)=2 \delta(t)+6 \bar{\varepsilon}(t) yzS(t)+3yzs(t)+2yzs(t)=2δ(t)+6εˉ(t)(0-到0+,t>0时)
y z s ( 0 − ) = y z s ′ ( 0 − ) = 0 y_{z s}\left(0_{-}\right)=y_{z s}^{\prime}\left(0_{-}\right)=0 yzs(0)=yzs(0)=0
由于上式等号右端含有 δ ( t ) , \delta(t), δ(t), y z S ′ ′ ( t ) y_{z S}^{\prime \prime}(t) yzS(t) 含有 δ ( t ) , \delta(t), δ(t), 从而 y z s ′ ( t ) y_{z s}^{\prime}(t) yzs(t) 跃变, 即
y z s ′ ( 0 + ) ≠ y z s ′ ( 0 − ) , 而  y z s ( t )  在  t = 0  连续, 即  y z s ( 0 + ) = y z s ( 0 − ) = 0 y_{z s}^{\prime}\left(0_{+}\right) \neq y_{z s}^{\prime}\left(0_{-}\right), \text {而 } y_{z s}(t) \text { 在 } t=0 \text { 连续, 即 } y_{z s}\left(0_{+}\right)=y_{z s}\left(0_{-}\right)=0 yzs(0+)=yzs(0), yzs(t)  t=0 连续 yzs(0+)=yzs(0)=0
积分得
y z s ′ ( 0 + ) = y z s ′ ( 0 − ) + 2 = 2 y_{z s}^{\prime}\left(0_{+}\right)=y_{z s}^{\prime}\left(0_{-}\right)+2=2 yzs(0+)=yzs(0)+2=2
t > 0 t>0 t>0 时, y z S ′ ′ ( t ) + 3 y z s ′ ( t ) + 2 y z s ( t ) = 6 ε ( t ) \quad y_{z S}^{\prime \prime}(t)+3 y_{z s}^{\prime}(t)+2 y_{z s}(t)=6 \varepsilon(t) yzS(t)+3yzs(t)+2yzs(t)=6ε(t)
不难求得其齐次解为 C z s 1 e − t + C z s 2 e ′ − 2 t C_{z s 1} e^{-t}+C_{z s 2} e_{\prime}^{-2 t} Czs1et+Czs2e2t 其特解为常数3,
于是有 y z S ( t ) = C z S 1 e − t + C z s 2 e − 2 t + 3 t > 0 y_{z S}(t)=C_{z S 1} e^{-t}+C_{z s 2} e^{-2 t}+3 \quad t>0 yzS(t)=CzS1et+Czs2e2t+3t>0
 代入初始值求得  y z s ( t ) = − 4 e − t + e − 2 t + 3 , t ≥ 0 , y z S ′ ( 0 + ) = 2 y ( t ) = y z i ( t ) + y z s ( t ) = 4 e − t − 2 e − 2 t + ( − 4 e − t + e − 2 t + 3 ) = − e − 2 t + 3 , t ≥ 0 \begin{array}{c} \text { 代入初始值求得 } \quad y_{z s}(t)=-4 e^{-t}+e^{-2 t}+3, t \geq 0, \\ y_{z S}^{\prime}\left(0_{+}\right)=2 \\ y(t)=y_{z i}(t)+y_{z s}(t)=4 e^{-t}-2 e^{-2 t}+\left(-4 e^{-t}+e^{-2 t}+3\right) \\ =-e^{-2 t}+3, t \geq 0 \end{array}  代入初始值求得 yzs(t)=4et+e2t+3,t0,yzS(0+)=2y(t)=yzi(t)+yzs(t)=4et2e2t+(4et+e2t+3)=e2t+3,t0

查漏补缺

线性时不变系统描述

连续离散对比

LTI ( Linear Time Invariant ) 系统的时域分析,归结为:建立并求解线性微(差)分方程。这种方法是在时域内进行的,比较直观,物理概念清楚,是学习各种变换域分析法的基础。

LTI连续系统LTI离散系统
变量tk
函数输入f(t);输出y(t)输入f(k);输出y(k)
基本信号δ(t) ε(t)δ(k) ε(k)
求导微分差分
系统描述微分方程差分方程

连续的例子(一定要注意定义域连续即可)
在这里插入图片描述
离散的例子
在这里插入图片描述

基本信号

δ ( t ) → ε ( t ) ε ( t ) = ∫ − ∞ t δ ( τ ) d τ \delta(t)→\varepsilon(t) \\ \varepsilon(t)=\int_{-\infty}^{t} \delta(\tau) d \tau δ(t)ε(t)ε(t)=tδ(τ)dτ
在这里插入图片描述

δ ( k ) → ε ( k ) ε ( k ) = ∑ i = − ∞ k δ ( i ) \delta(k)→\varepsilon(k)\\ \varepsilon(k)=\sum_{i=-\infty}^{k} \delta(i) δ(k)ε(k)ε(k)=i=kδ(i)
在这里插入图片描述

微分和差分

f ′ ( t ) = lim ⁡ Δ t → 0 f ( t ) − f ( t − Δ t ) t − ( t − Δ t ) f^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{f(t)-f(t-\Delta t)}{t-(t-\Delta t)} f(t)=limΔt0t(tΔt)f(t)f(tΔt)

t → k , Δ t → Δ k , Δ k = 1 ( Δ k → 0 是 要 找 到 最 小 区 间 , 而 在 序 列 中 就 是 1 ) t \rightarrow k, \Delta t \rightarrow \Delta k,\Delta k=1(\Delta k→0是要找到最小区间,而在序列中就是1) tk,ΔtΔk,Δk=1Δk01

∇ f ( k ) = f ( k ) − f ( k − 1 ) k − ( k − 1 ) = f ( k ) − f ( k − 1 ) \nabla f(k)=\frac{f(k)-f(k-1)}{k-(k-1)}=f(k)-f(k-1) f(k)=k(k1)f(k)f(k1)=f(k)f(k1)
一阶前向差分:
Δ f ( k ) = f ( k + 1 ) − f ( k ) \Delta f(\mathbf{k})=f(\mathbf{k}+\mathbf{1})-f(\mathbf{k}) Δf(k)=f(k+1)f(k)
Δ \Delta Δ ∇ \nabla 称为差分算子,无原则区别。
本课程主要用后向差分

差分的性质

差分的线性性质:
∇ [ a f 1 ( k ) + b f 2 ( k ) ] = a ∇ f 1 ( k ) + b ∇ f 2 ( k ) \nabla\left[a f_{1}(k)+b f_{2}(k)\right]=a \nabla f_{1}(k)+b \nabla f_{2}(k) [af1(k)+bf2(k)]=af1(k)+bf2(k)

二阶差分定义:
∇ 2 f ( k ) = ∇ [ ∇ f ( k ) ] = ∇ [ f ( k ) − f ( k − 1 ) ] = ∇ f ( k ) − ∇ f ( k − 1 ) = f ( k ) − f ( k − 1 ) − [ f ( k − 1 ) − f ( k − 2 ) ] = f ( k ) − 2 f ( k − 1 ) + f ( k − 2 ) \nabla^{2} f(k)=\nabla[\nabla f(k)]=\nabla[f(k)-f(k-1)]\\ =\nabla f(k)-\nabla f(k-1)\\ =f(k)-f(k-1)-[f(k-1)-f(k-2)]\\ =f(k)-2 f(k-1)+f(k-2) 2f(k)=[f(k)]=[f(k)f(k1)]=f(k)f(k1)=f(k)f(k1)[f(k1)f(k2)]=f(k)2f(k1)+f(k2)

m阶差分:
∇ m f ( k ) = f ( k ) + b 1 f ( k − 1 ) + ⋯ + f m ( k − m ) \nabla^{m} f(k)=f(k)+b_{1} f(k-1)+\cdots+f_{m}(k-m) mf(k)=f(k)+b1f(k1)++fm(km)
减去的最后一项的被减数就是阶数

常系数线性微分方程与差分方程

y ( n ) ( t ) + a n − 1 y ( n − 1 ) ( t ) + ⋯ + a 1 y ( 1 ) ( t ) + a 0 y ( t ) = b m f ( m ) ( t ) + b m − 1 f ( m − 1 ) ( t ) + ⋯ + b 1 f ( 1 ) ( t ) + b 0 f ( t ) y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\cdots+a_{1} y^{(1)}(t)+a_{0} y(t)\\ =b_{m} f^{(m)}(t)+b_{m-1} f^{(m-1)}(t)+\cdots+b_{1} f^{(1)}(t)+b_{0} f(t) y(n)(t)+an1y(n1)(t)++a1y(1)(t)+a0y(t)=bmf(m)(t)+bm1f(m1)(t)++b1f(1)(t)+b0f(t)
y ( k ) + a n − 1 y ( k − 1 ) + ⋯ + a 1 y ( k − n + 1 ) + a 0 y ( k − n ) = b m f ( k ) + b m − 1 f ( k − 1 ) + ⋯ + b 1 f ( k − m + 1 ) + b 0 f ( k − m ) y(k)+a_{n-1} y(k-1)+\cdots+a_{1} y(k-n+1)+a_{0} y(k-n)\\ =b_{m} f(k)+b_{m-1} f(k-1)+\cdots+b_{1} f(k-m+1)+b_{0} f(k-m) y(k)+an1y(k1)++a1y(kn+1)+a0y(kn)=bmf(k)+bm1f(k1)++b1f(km+1)+b0f(km)
n阶差分方程
在这里插入图片描述
在这里插入图片描述
u C ′ ′ ( t ) + R L u C ′ ( t ) + 1 L C u C ( t ) = 1 L C u S ( t ) u_{C}^{\prime \prime}(t)+\frac{R}{L} u_{C}^{\prime}(t)+\frac{1}{L C} u_{C}(t)=\frac{1}{L C} u_{S}(t) uC(t)+LRuC(t)+LC1uC(t)=LC1uS(t)
u C ( t ) → y ( t ) u S ( t ) → f ( t ) u_{C}(t)→y(t) \quad u_{S}(t)→f(t) uC(t)y(t)uS(t)f(t)

在这里插入图片描述
∇ 2 y ( k ) = y ( k ) − 2 y ( k − 1 ) + y ( k − 2 ) = f ( k ) \nabla^{2} y(k)=y(k)-2 y(k-1)+y(k-2)=f(k) 2y(k)=y(k)2y(k1)+y(k2)=f(k)
时域分析第一个要建立微分或差分方程,实际系统,譬如控制系统要学控制理论,机械系统要学机械工程。
差分可以用做图像美化

线性时不变系统的特性

LTI连续系统LTI离散系统
经典解 y h ( t ) + y p ( t ) y_{h}(t)+y_{p}(t) yh(t)+yp(t) y h ( k ) + y p ( k ) y_{h}(k)+y_{p}(k) yh(k)+yp(k)
零输入和零状态 y z i ( t ) + y z s ( t ) y_{z i}(t)+y_{z s}(t) yzi(t)+yzs(t) y z i ( k ) + y z s ( k ) y_{z i}(k)+y_{z s}(k) yzi(k)+yzs(k)
卷积卷积积分卷积和

经典解没有对输出做分解不满足线性性质,需要根据输入研究输出的形式。

微分方程经典解

一个线性系统, 其激励信号 f ( t ) f(t) f(t) 与响应信号 y ( t ) y(t) y(t) 之间的关系, 可以用下列形式的微分方程式来描述
y ( n ) ( t ) + a n − 1 y ( n − 1 ) ( t ) + ⋯ + a 1 y ( 1 ) ( t ) + a 0 y ( t ) = b m f ( m ) ( t ) + b m − 1 f ( m − 1 ) ( t ) + ⋯ + b 1 f ( 1 ) ( t ) + b 0 f ( t ) \begin{array}{r} y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\cdots+a_{1} y^{(1)}(t)+a_{0} y(t) \\ =b_{m} f^{(m)}(t)+b_{m-1} f^{(m-1)}(t)+\cdots+b_{1} f^{(1)}(t)+b_{0} f(t) \end{array} y(n)(t)+an1y(n1)(t)++a1y(1)(t)+a0y(t)=bmf(m)(t)+bm1f(m1)(t)++b1f(1)(t)+b0f(t)
若系统为时不变的, 则 a , a, a, b均为常数, 此方程为常系数的 n n n 阶 线性常微分方程。
方程的阶次由独立的动态元件的个数决定。

1.特征方程,特征根
2.齐次解(单根一个待定系数,重根两个)

齐次解

由特征方程 → \rightarrow 求特征根 → \rightarrow 写出齐次解形式

y h ( t ) = ∑ i = 1 n C i e λ i t y_{h}(t)=\sum_{i=1}^{n} C_{i} e^{\lambda_{i} t} yh(t)=i=1nCieλit

注意重根情况处理方法。

特解

激励f(t)响应 y ( t ) y(t) y(t) 的特解 y p ( t ) y_{p}(t) yp(t)
F(常数)P(常数)
t m t^m tm P m t m + P m − 1 t m − 1 + ⋯ + P 1 t + P 0 (  特征根均不为0  ) t r ( P m t m + P m − 1 t m − 1 + ⋯ + P 1 t + P 0 )  (有r重0特征根)  \begin{array}{ll}P_{m} t^{m}+P_{m-1} t^{m-1}+\cdots+P_{1} t+P_{0} & (\text { 特征根均不为0 }) \\ t^{r}\left(P_{m} t^{m}+P_{m-1} t^{m-1}+\cdots+P_{1} t+P_{0}\right) & \text { (有r重0特征根) }\end{array} Pmtm+Pm1tm1++P1t+P0tr(Pmtm+Pm1tm1++P1t+P0)( 特征根均不为) (r0特征根
e α t e^{\alpha t} eαt P e α t ( α 不 等 于 特 征 根 ) ( P 1 t + P 0 ) e α t ( 等 于 特 征 单 根 ) ( P r t r + P r − 1 t r − 1 + ⋯ + P 1 t + P 0 ) e α t ( 等 于 特 征 重 根 ) Pe^{\alpha t}\quad(\alpha 不等于特征根)\newline (P_{1} t+P_{0}) e^{\alpha t}\quad(等于特征单根)\newline (P_{r} t^{r}+P_{r-1} t^{r-1}+\cdots+P_{1} t+P_{0}) e^{\alpha t}\quad(等于特征重根) Peαt(α)(P1t+P0)eαt()(Prtr+Pr1tr1++P1t+P0)eαt()
cos ⁡ ( β t ) sin ⁡ ( β t ) \cos (\beta t) \sin (\beta t) cos(βt)sin(βt) P 1 cos ⁡ ( β t ) + P 2 sin ⁡ ( β t ) P_{1} \cos (\beta t)+P_{2} \sin (\beta t) P1cos(βt)+P2sin(βt)

齐次解对应自由响应(形式与输入无关,系数有关),特解对应强迫响应

例题

例:描述某系统的微分方程为
y ′ ′ ( t ) + 5 y ′ ( t ) + 6 y ( t ) = f ( t ) y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=f(t) y(t)+5y(t)+6y(t)=f(t)
求: 当 f ( t ) = e − 2 t , t ≥ 0 ; y ( 0 ) = 1 , y ′ ( 0 ) = 0 f(t)=e^{-2 t}, \quad t \geq 0 ; \quad y(0)=1, \quad y^{\prime}(0)=0 f(t)=e2t,t0;y(0)=1,y(0)=0 时的全解。
解:特征方程为 λ 2 + 5 λ + 6 = 0 \quad \lambda^{2}+5 \lambda+6=0 λ2+5λ+6=0
特征根
λ 1 = − 2 , λ 2 = − 3 \lambda_{1}=-2, \quad \lambda_{2}=-3 λ1=2,λ2=3

齐次解为
y h ( t ) = C 1 e − 2 t + C 2 e − 3 t y_{h}(t)=C_{1} e^{-2 t}+C_{2} e^{-3 t} yh(t)=C1e2t+C2e3t

当激励 f ( t ) = e − 2 t f(t)=e^{-2 t} f(t)=e2t 时,其指数与特征根之一相重。故其特解为
y p ( t ) = ( P 1 t + P 0 ) e − 2 t y_{p}(t)=\left(P_{1} t+P_{0}\right) e^{-2 t} yp(t)=(P1t+P0)e2t

代入微分方程可得
P 1 e − 2 t = e − 2 t P_{1} e^{-2 t}=e^{-2 t} P1e2t=e2t
P 0 P_{0} P0 无法求出。特解为:
y p ( t ) = ( t + P 0 ) e − 2 t y_{p}(t)=\left(t+P_{0}\right) e^{-2 t} yp(t)=(t+P0)e2t
全解为:
y ( t ) = C 1 e − 2 t + C 2 e − 3 t + ( t + P 0 ) e − 2 t y(t)=C_{1} e^{-2 t}+C_{2} e^{-3 t}+\left(t+P_{0}\right) e^{-2 t} y(t)=C1e2t+C2e3t+(t+P0)e2t
将初始条件 y ( 0 ) = 1 , y ′ ( 0 ) = 0 y(0)=1, y^{\prime}(0)=0 y(0)=1,y(0)=0代入,得
y ( 0 ) = ( C 1 + P 0 ) + C 2 = 1 y ′ ( 0 ) = − 2 ( C 1 + P 0 ) − 3 C 2 + 1 = 0 \begin{array}{l} y(0)=\left(C_{1}+P_{0}\right)+C_{2}=1 \\ y^{\prime}(0)=-2\left(C_{1}+P_{0}\right)-3 C_{2}+1=0 \end{array} y(0)=(C1+P0)+C2=1y(0)=2(C1+P0)3C2+1=0

解得:
C 1 + P 0 = 2 C_{1}+P_{0}=2 C1+P0=2

C 2 = − 1 C_{2}=-1 C2=1

最后得微分方程的全解为:
y ( t ) = ( 2 + t ) e − 2 t − e − 3 t t ≥ 0 y(t)=(2+t) e^{-2 t}-e^{-3 t} \quad t \geq 0 y(t)=(2+t)e2te3tt0
此外, f ( t ) = cos ⁡ t f(t)=\cos t f(t)=cost f ( t ) = ε ( t ) f(t)=\varepsilon(t) f(t)=ε(t)也需要计算

响应的划分

自由响应 + + + 强迫响应 ( ( ( Natural + + + forced ) ) )
暂态响应+稳态响应 (Transient+Steady-state)
零输入响应 + + + 零状态响应(Zero-input+Zero-state)

0-和0+

起始点的跳变

激励输入前后的影响
0 − 0_{-} 0 状态(起始状态)
y ( 0 − ) , y ( 1 ) ( 0 − ) , … , y ( n − 1 ) ( 0 − ) y\left(0_{-}\right), y^{(1)}\left(0_{-}\right), \ldots, y^{(n-1)}\left(0_{-}\right) y(0),y(1)(0),,y(n1)(0)

t = 0 − t=0_{-} t=0 时,激励尚未接入,该时刻的值 y ( j ) ( 0 − ) y^{(j)}\left(0_{-}\right) y(j)(0) 反映了系统的历史情况而与激励无关。
0 + 0_{+} 0+ 状态
y ( 0 + ) , y ( 1 ) ( 0 + ) , … , y ( n − 1 ) ( 0 + ) y\left(0_{+}\right), y^{(1)}\left(0_{+}\right), \ldots, y^{(n-1)}\left(0_{+}\right) y(0+),y(1)(0+),,y(n1)(0+)

y ( j ) ( 0 + ) y^{(j)}\left(0_{+}\right) y(j)(0+) 包含了输入信号的作用,不便

冲激函数匹配法

配平的原理: t = 0 t=0 t=0 时刻微分方程左右两端的 δ ( t ) \delta(t) δ(t) 及各阶导数应该平衡(其它 项也应该平衡,我们讨论初始条件,可以不管其它项 )
例 1 : 描述某系统的微分方程为
y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 f ′ ( t ) + f ( t )  已知  y ( 0 − ) = 2 , y ′ ( 0 − ) = 0 , f ( t ) = δ ′ ( t ) ,  求  y ( 0 + ) 和  y ′ ( 0 + ) \begin{array}{c} y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=2 f^{\prime}(t)+f(t) \\ \text { 已知 } y\left(0_{-}\right)=2, y^{\prime}\left(0_{-}\right)=0, f(t)=\delta^{\prime}(t), \text { 求 } y\left(0_{+}\right) \text {和 } y^{\prime}\left(0_{+}\right) \end{array} y(t)+3y(t)+2y(t)=2f(t)+f(t) 已知 y(0)=2,y(0)=0,f(t)=δ(t),  y(0+) y(0+)
分析:方程右边包含的 δ ( t ) \delta(t) δ(t) 的最高次项是 2 δ ′ ′ ( t ) ] y ′ ′ ( t ) \left.2 \delta^{\prime \prime}(t)\right] y^{\prime \prime}(t) 2δ(t)]y(t) 且仅有 y ′ ′ ( t ) y^{\prime \prime}(t) y(t) 包含 2 δ ′ ′ ( t ) 2 \delta^{\prime \prime}(t) 2δ(t)
方程左边 也应该包含 2 δ ′ ′ ( t ) 2 \delta^{\prime \prime}(t) 2δ(t)
y ′ ( t )  包含  δ ′ ( t ) y^{\prime}(t) \text { 包含 } \delta^{\prime}(t) y(t) 包含 δ(t)

零输入响应和零状态响应

这种划分线性特征两部分都有,此前的自由和强迫响应不能提现。
y ( t ) = y z i ( t ) + y z s ( t ) y(t)=y_{z i}(t)+y_{z s}(t) y(t)=yzi(t)+yzs(t)
零输入响应 y z i ( t ) : y_{z i}(t): yzi(t): 没有外加激厉信号的作用,只由起始状态 ( 起始时刻系统储能 ) 所产生的响应。(0-到0+没有跳变,因为根本没有激励)
零状态响应 y z s ( t ) : y_{z s}(t): yzs(t): 不考虑原始时刻系统储能的作用 ( 起始状态等于零 ),由系统的外加激励信号产生的响应。

零状态响应, 在t=0-时刻激励尚未接入, 故应有
y z s ( 0 − ) = 0 y_{z s}\left(0_{-}\right)=0 yzs(0)=0
y ( 0 − ) = y z i ( 0 − ) + y z S ( 0 − ) = y z i ( 0 − ) = y z i ( 0 + ) y\left(0_{-}\right)\\ =y_{z i}\left(0_{-}\right)+y_{z S}\left(0_{-}\right)\\ =y_{z i}\left(0_{-}\right)\\ =y_{z i}\left(0_{+}\right) y(0)=yzi(0)+yzS(0)=yzi(0)=yzi(0+)

y ( 0 + ) = y z i ( 0 + ) + y z s ( 0 + ) = y z i ( 0 − ) + y z s ( 0 + ) y\left(0_{+}\right)\\ =y_{z i}\left(0_{+}\right)+y_{z s}\left(0_{+}\right)\\ =y_{z i}\left(0_{-}\right)+y_{z s}\left(0_{+}\right) y(0+)=yzi(0+)+yzs(0+)=yzi(0)+yzs(0+)\
=y\left(0_{-}\right)+y_{z s}\left(0_{+}\right)$
y z S ( 0 + ) = y ( 0 + ) − y ( 0 − ) y_{z S}\left(0_{+}\right)=y\left(0_{+}\right)-y\left(0_{-}\right) yzS(0+)=y(0+)y(0)

对于零输入响应,由于激励为零,故有 y z i ( j ) ( 0 + ) = y z i ( j ) ( 0 − ) = y ( j ) ( 0 − ) \quad y_{z i}^{(j)}\left(0_{+}\right)=y_{z i}^{(j)}\left(0_{-}\right)=y^{(j)}\left(0_{-}\right) yzi(j)(0+)=yzi(j)(0)=y(j)(0)

例题

y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) ,  已知  y ( 0 − ) = 2 , y ′ ( 0 − ) = 0 y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=2 f^{\prime}(t)+6 f(t), \text { 已知 } y\left(0_{-}\right)=2, y^{\prime}\left(0_{-}\right)=0 y(t)+3y(t)+2y(t)=2f(t)+6f(t), 已知 y(0)=2,y(0)=0
f ( t ) = ε ( t ) , f(t)=\varepsilon(t), f(t)=ε(t), 求该系统的零输入响应和零状态响应及全解。
(1) 零输入响应 y z i ( t ) y_{z i}(t) yzi(t) 激励为 0 , 0, 0, y z i ( t ) y_{z i}(t) yzi(t) 满足
y z i ′ ′ ( t ) + 3 y z i ′ ( t ) + 2 y z i ( t ) = 0 y_{z i}^{\prime \prime}(t)+3 y_{z i}^{\prime}(t)+2 y_{z i}(t)=0 yzi(t)+3yzi(t)+2yzi(t)=0
该齐次方程的特征根为 − 1 , − 2 , -1,-2, 1,2,
y z i ( t ) = C z i 1 e − t + C z i 2 e − 2 t y z i ( 0 − ) = y z i ( 0 + ) = y ( 0 − ) = 2 y z i ′ ( 0 − ) = y z i ′ ( 0 + ) = y ′ ( 0 − ) = 0 \begin{array}{l} y_{z i}(t)=C_{z i 1} e^{-t}+C_{z i 2} e^{-2 t} \\ y_{z i}\left(0_{-}\right)=y_{z i}\left(0_{+}\right)=y\left(0_{-}\right)=2 \\ y_{z i}^{\prime}\left(0_{-}\right)=y_{z i}^{\prime}\left(0_{+}\right)=y^{\prime}\left(0_{-}\right)=0 \end{array} yzi(t)=Czi1et+Czi2e2tyzi(0)=yzi(0+)=y(0)=2yzi(0)=yzi(0+)=y(0)=0

解得系数为 C z i 1 = 4 , C z i 2 = − 2 , C_{z i 1}=4, C_{z i 2}=-2, Czi1=4,Czi2=2, 代入得
y z i ( t ) = 4 e − t − 2 e − 2 t , t ≥ 0 y_{z i}(t)=4 e^{-t}-2 e^{-2 t}, \quad t \geq 0 yzi(t)=4et2e2t,t0

(2) 零状态响应 y z s ( t ) y_{z s}(t) yzs(t) 满足
y z s ′ ′ ( t ) + 3 y z s ′ ( t ) + 2 y z s ( t ) = 2 δ ( t ) + 6 ε ( t ) y_{z s}^{\prime \prime}(t)+3 y_{z s}^{\prime}(t)+2 y_{z s}(t)=2 \delta(t)+6 {\varepsilon}(t) yzs(t)+3yzs(t)+2yzs(t)=2δ(t)+6ε(t)(0-到0+,t>0时)

y z s ( 0 − ) = y z s ′ ( 0 − ) = 0 y_{z s}\left(0_{-}\right)=y_{z s}^{\prime}\left(0_{-}\right)=0 yzs(0)=yzs(0)=0

由于上式等号右端含有 δ ( t ) , \delta(t), δ(t), y z S ′ ′ ( t ) y_{z S}^{\prime \prime}(t) yzS(t) 含有 δ ( t ) , \delta(t), δ(t), 从而 y z s ′ ( t ) y_{z s}^{\prime}(t) yzs(t) 跃变(阶跃函数), 即
y z s ′ ( 0 + ) ≠ y z s ′ ( 0 − ) , 而  y z s ( t )  在  t = 0  连续, 即  y z s ( 0 + ) = y z s ( 0 − ) = 0 y_{z s}^{\prime}\left(0_{+}\right) \neq y_{z s}^{\prime}\left(0_{-}\right), \text {而 } y_{z s}(t) \text { 在 } t=0 \text { 连续, 即 } y_{z s}\left(0_{+}\right)=y_{z s}\left(0_{-}\right)=0 yzs(0+)=yzs(0), yzs(t)  t=0 连续 yzs(0+)=yzs(0)=0

积分得
y z s ′ ( 0 + ) = y z s ′ ( 0 − ) + 2 = 2 y_{z s}^{\prime}\left(0_{+}\right)=y_{z s}^{\prime}\left(0_{-}\right)+2=2 yzs(0+)=yzs(0)+2=2

t > 0 t>0 t>0 时, y z S ′ ′ ( t ) + 3 y z s ′ ( t ) + 2 y z s ( t ) = 6 ε ( t ) ( 此 时 t > 0 , 超 过 了 阶 跃 函 数 的 定 义 范 围 , 因 此 省 去 ) \quad y_{z S}^{\prime \prime}(t)+3 y_{z s}^{\prime}(t)+2 y_{z s}(t)=6 \varepsilon(t)(此时t>0,超过了阶跃函数的定义范围,因此省去) yzS(t)+3yzs(t)+2yzs(t)=6ε(t)t>0
不难求得其齐次解为 C z s 1 e − t + C z s 2 e ′ − 2 t C_{z s 1} e^{-t}+C_{z s 2} e_{\prime}^{-2 t} Czs1et+Czs2e2t 其特解为常数3,
于是有 y z S ( t ) = C z S 1 e − t + C z s 2 e − 2 t + 3 t > 0 y_{z S}(t)=C_{z S 1} e^{-t}+C_{z s 2} e^{-2 t}+3 \quad t>0 yzS(t)=CzS1et+Czs2e2t+3t>0
 代入初始值求得  y z s ( t ) = − 4 e − t + e − 2 t + 3 , t ≥ 0 , y z S ′ ( 0 + ) = 2 y ( t ) = y z i ( t ) + y z s ( t ) = 4 e − t − 2 e − 2 t + ( − 4 e − t + e − 2 t + 3 ) = − e − 2 t + 3 , t ≥ 0 \begin{array}{c} \text { 代入初始值求得 } \quad y_{z s}(t)=-4 e^{-t}+e^{-2 t}+3, t \geq 0, \\ y_{z S}^{\prime}\left(0_{+}\right)=2 \\ y(t)=y_{z i}(t)+y_{z s}(t)=4 e^{-t}-2 e^{-2 t}+\left(-4 e^{-t}+e^{-2 t}+3\right) \\ =-e^{-2 t}+3, t \geq 0 \end{array}  代入初始值求得 yzs(t)=4et+e2t+3,t0,yzS(0+)=2y(t)=yzi(t)+yzs(t)=4et2e2t+(4et+e2t+3)=e2t+3,t0

进一步理解

y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = r ( t ) = { 2 f ′ ( t ) + 6 f ( t ) f ( t ) = ε ( t ) 2 f ′ ( t ) 6 f ( t ) y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=r(t)=\left\{\begin{array}{cc}2 f^{\prime}(t)+6 f(t) & f(t)=\varepsilon(t) \\ 2 f^{\prime}(t) \\ 6 f(t)\end{array}\right. y(t)+3y(t)+2y(t)=r(t)=2f(t)+6f(t)2f(t)6f(t)f(t)=ε(t)
全解=齐次解+特解 (由方程右边的形式决定)
y z i ′ ′ ( t ) + 3 y z i ′ ( t ) + 2 y z i ( t ) = 0 y_{z i}^{\prime \prime}(t)+3 y_{z i}^{\prime}(t)+2 y_{z i}(t)=0 yzi(t)+3yzi(t)+2yzi(t)=0
y z S ′ ′ ( t ) + 3 y z s ′ ( t ) + 2 y z s ( t ) = 2 f ′ ( t ) + 6 f ( t ) y_{z S}^{\prime \prime}(t)+3 y_{z s}^{\prime}(t)+2 y_{z s}(t)=2 f^{\prime}(t)+6 f(t) yzS(t)+3yzs(t)+2yzs(t)=2f(t)+6f(t)
从零状态或零输入求解的过程依然是经典解的求解方法

冲激响应和阶跃响应

冲击响应是输入δ的零状态响应
阶跃响应是ε下的零状态响应

卷积积分

信号的时域分解与卷积积分

在这里插入图片描述
p(t)是一个参照矩形,因为高为 1 Δ \frac{1}{\Delta} Δ1宽为 Δ \Delta Δ
“0”号脉冲高度 f ( 0 ) f(0) f(0), 宽度为 Δ , f ( 0 ) △ p ( t ) \Delta, f(0) \triangle p(t) Δ,f(0)p(t)
在这里插入图片描述
“1”号脉冲高度 f ( Δ ) f(\Delta) f(Δ),宽度为 Δ , f ( Δ ) Δ p ( t − Δ ) \Delta, f(\Delta) \Delta p(t-\Delta) Δ,f(Δ)Δp(tΔ)
“ − 1 “-1 1 ”号脉冲高度 f ( − Δ ) 、 f(-\Delta) 、 f(Δ) 宽度为 Δ , f ( − Δ ) Δ p ( t + Δ ) \Delta, f(-\Delta) \Delta p(t+\Delta) Δ,f(Δ)Δp(t+Δ)

f ( t ) ^ = ∑ n = − ∞ + ∞ f ( n Δ ) Δ p ( t − n Δ ) \widehat{f(t)}=\sum\limits_{n=-\infty}^{+\infty} f(n \Delta) \Delta p(t-n \Delta) f(t) =n=+f(nΔ)Δp(tnΔ)
用小矩形去逼近函数值,近似逼近的表达式,累加
lim ⁡ Δ → 0 f ( t ) ^ = f ( t ) = ∫ − ∞ + ∞ f ( τ ) δ ( t − τ ) d τ \lim _{\Delta \rightarrow 0} \widehat{f(t)}=f(t)=\int\limits_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) \mathrm{d} \tau limΔ0f(t) =f(t)=+f(τ)δ(tτ)dτ
Δ \Delta Δ趋近于零的时候,累加变成积分, Δ p \Delta p Δp变成了无穷小,因此变成里 τ \tau τ
同时上面的参考矩形宽度无限减小高度无限增加,成为冲激函数。

任意信号作用下的零状态响应

在这里插入图片描述
根据 h h h (t)的定义: δ ( t ) ⟶ h ( t ) \delta(t) \quad \longrightarrow \quad h(t) δ(t)h(t)

由时不变性: δ ( t − τ ) ⟶ h ( t − τ ) \quad \delta(t-\tau) \quad \longrightarrow \quad h(t-\tau) δ(tτ)h(tτ)

由齐次性: f ( τ ) δ ( t − τ ) ⟶ f ( τ ) h ( t − τ ) \quad f(\tau) \delta(t-\tau) \quad \longrightarrow f(\tau) h(t-\tau) f(τ)δ(tτ)f(τ)h(tτ)

由叠加性: ∫ − ∞ + ∞ f ( τ ) δ ( t − τ ) d τ ⟶ ∫ − ∞ + ∞ f ( τ ) h ( t − τ ) d τ \quad \int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) \mathrm{d} \tau \longrightarrow \int_{-\infty}^{+\infty} f(\tau) h(t-\tau) \mathrm{d} \tau +f(τ)δ(tτ)dτ+f(τ)h(tτ)dτ

y z s ( t ) = ∫ − ∞ + ∞ f ( τ ) h ( t − τ ) d τ y_{z s}(t)=\int_{-\infty}^{+\infty} f(\tau) h(t-\tau) \mathrm{d} \tau yzs(t)=+f(τ)h(tτ)dτ

卷积积分的定义

已知定义在区间 ( − ∞ , ∞ ) (-\infty, \infty) (,) 上的两个函数 f 1 ( t ) f_{1}(\mathrm{t}) f1(t) f 2 ( t ) , f_{2}(\mathrm{t}), f2(t), 则定义积分
f ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f(t)=\int_{-\infty}^{+\infty} f_{1}(\tau) f_{2}(t-\tau) \mathrm{d} \tau f(t)=+f1(τ)f2(tτ)dτ

f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(\mathrm{t}) f2(t) 的卷积积分 ,简称卷积 ;记为 f ( t ) = f 1 ( t ) ∗ f 2 ( t ) f(\mathrm{t})=f_{1}(\mathrm{t}) * f_{2}(\mathrm{t}) f(t)=f1(t)f2(t)

f ( t ) = ∫ − ∞ + ∞ f ( τ ) δ ( t − τ ) d τ = f ( t ) ∗ δ ( t ) y z s ( t ) = f ( t ) ∗ h ( t ) f(t)=\int_{-\infty}^{+\infty} f(\tau) \delta(t-\tau) \mathrm{d} \tau=f(t) * \delta(t) \quad y_{z s}(t)=f(t) * h(t) f(t)=+f(τ)δ(tτ)dτ=f(t)δ(t)yzs(t)=f(t)h(t)

任意信号时域分解实际上就是和 Δ \Delta Δ做卷积。

任意输入信号对应的零状态响应等于 f ( t ) f(\mathrm{t}) f(t) 和h(t)的卷积。

卷积积分的计算

由于系统的因果性或激励信号存在时间的局限性,卷积的积分限会有所变化。卷积积分中积分限的确定是非常关键的。
在这里插入图片描述
已知 u ( t ) = e − t 2 [ ε ( t ) − ε ( t − 2 ) ] , u(t)=e^{-\frac{t}{2}}[\varepsilon(t)-\varepsilon(t-2)], u(t)=e2t[ε(t)ε(t2)], i ( t ) i(t) i(t) 的零状态响应
输入信号中包含阶跃信号之差值,只在一段时间起作用。
1、列写KVL方程: L d i ( t ) d t + R i ( t ) = u ( t ) \quad L \frac{d i(t)}{d t}+R i(t)=u(t) Ldtdi(t)+Ri(t)=u(t)
2、冲击响应为: h ( t ) = e − t ε ( t ) \quad h(t)=e^{-t} \varepsilon(t) h(t)=etε(t)
3、 i ( t ) = ∫ − ∞ + ∞ u ( τ ) h ( t − τ ) d τ = ∫ − ∞ + ∞ e − τ 2 [ ε ( τ ) − ε ( τ − 2 ) ] ⋅ e − ( t − τ ) ε ( t − τ ) d τ = e − t ∫ − ∞ + ∞ e τ 2 [ ε ( τ ) ⋅ ε ( t − τ ) ] d τ − e − t ∫ − ∞ + ∞ e τ 2 [ ε ( τ − 2 ) ⋅ ε ( t − τ ) ] d τ i(t)=\int_{-\infty}^{+\infty} u(\tau) h(t-\tau) d \tau\\ =\int_{-\infty}^{+\infty} e^{-\frac{\tau} {2}}[\varepsilon(\tau)-\varepsilon(\tau-2)] \cdot e^{-(t-\tau)} \varepsilon(t-\tau) d \tau\\ =e^{-t} \int_{-\infty}^{+\infty} e^{\frac{\tau} {2}}[\varepsilon(\tau) \cdot \varepsilon(t-\tau)] d \tau-e^{-t} \int_{-\infty}^{+\infty} e^{\frac{\tau} {2}}[\varepsilon(\tau-2) \cdot \varepsilon(t-\tau)] d \tau i(t)=+u(τ)h(tτ)dτ=+e2τ[ε(τ)ε(τ2)]e(tτ)ε(tτ)dτ=et+e2τ[ε(τ)ε(tτ)]dτet+e2τ[ε(τ2)ε(tτ)]dτ
4、定积分限:
对于 ε ( τ ) ⋅ ε ( t − τ ) \varepsilon(\tau) \cdot \varepsilon(t-\tau) ε(τ)ε(tτ)
{ τ > 0 t − τ > 0 ⇒ { 0 < τ < t t > 0 \left\{\begin{array}{c}\tau>0 \\ t-\tau>0\end{array} \Rightarrow\left\{\begin{array}{c}0<\tau<t \\ t>0\end{array}\right.\right. {τ>0tτ>0{0<τ<tt>0
对于 ε ( τ − 2 ) ⋅ ε ( t − τ ) \varepsilon(\tau-2) \cdot \varepsilon(t-\tau) ε(τ2)ε(tτ)
{ τ − 2 > 0 t − τ > 0 ⇒ { 2 < τ < t t > τ \left\{\begin{array}{l}\tau-2>0 \\ t-\tau>0\end{array} \Rightarrow\left\{\begin{array}{l}2<\tau<t \\ t>\tau\end{array}\right.\right. {τ2>0tτ>0{2<τ<tt>τ

i ( t ) = [ e − t ∫ 0 t e τ 2 d τ ] ⋅ ε ( t ) − [ e − t ∫ 2 t e τ 2 d τ ] ⋅ ε ( t − 2 ) i(t)=\left[e^{-t} \int_{0}^{t} e^{\frac{\tau}{2}} d \tau\right] \cdot \varepsilon(t)-\left[e^{-t} \int_{2}^{t} e^{\frac{\tau}{2}} d \tau\right] \cdot \varepsilon(t-2) i(t)=[et0te2τdτ]ε(t)[et2te2τdτ]ε(t2)
= 2 ( e t 2 − e − t ) ε ( t ) − 2 ( e − t 2 − e − ( t − 1 ) ) ε ( t − 2 ) =2\left(e^{\frac{t}{2}}-e^{-t}\right) \varepsilon(t)-2\left(e^{-\frac{t}{2}}-e^{-(t-1)}\right) \varepsilon(t-2) =2(e2tet)ε(t)2(e2te(t1))ε(t2)
输入电压如图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
i ( t ) = { 2 ( e − t 2 − e − t ) , 0 < t ≤ 2 2 ( e − ( t − 1 ) − e − t ) , t > 2 i(t)=\left\{\begin{array}{lr}2\left(e^{-\frac{t}{2}}-e^{-t}\right), & 0<t \leq 2 \\ 2\left(e^{-(t-1)}-e^{-t}\right), & t>2\end{array}\right. i(t)={2(e2tet),2(e(t1)et),0<t2t>2

卷积积分的图解法

用图解法直观,尤其是函数式复杂时,用图形分段求出积分限尤为方便准确, 用解析式法作容易出错,最好将两种方法结合起来。
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f_{1}(t) * f_{2}(t)=\int_{-\infty}^{+\infty} f_{1}(\tau) f_{2}(t-\tau) \mathrm{d} \tau f1(t)f2(t)=+f1(τ)f2(tτ)dτ

卷积过程可分解为四步:
(1) 换元: t换为 τ → \tau \rightarrow τ f 1 ( τ ) , f 2 ( τ ) f_{1}(\tau), \quad f_{2}(\tau) f1(τ),f2(τ)
(2) 反转平移:由 f 2 ( τ ) f_{2}(\tau) f2(τ) 反转一 f 2 ( − τ ) f_{2}(-\tau) f2(τ) 右移 t → f 2 ( t − τ ) \mathrm{t} \rightarrow f_{2}(\mathrm{t}-\tau) tf2(tτ)
 (3) 乘积:  f 1 ( τ ) f 2 ( t − τ ) \begin{array}{ll}\text { (3) 乘积: } & f_{1}(\tau) f_{2}(\mathrm{t}-\tau)\end{array}  (3) 乘积f1(τ)f2(tτ)
注意:t为参变量。

已知 f 1 ( t ) = { 1 , ∣ t ∣ < 1 0 , ∣ t ∣ > 1 , f 2 ( t ) = t 2 , ( 0 ≤ t ≤ 3 ) , f_{1}(t)=\left\{\begin{array}{ll}1, & |t|<1 \\ 0, & |t|>1\end{array}, f_{2}(t)=\frac{t}{2}, \quad(0 \leq t \leq 3) \quad,\right. f1(t)={1,0,t<1t>1,f2(t)=2t,(0t3), 求卷积 g ( t ) g(t) g(t)
在这里插入图片描述
t : t: t: 移动的距离
t = 0 f 2 ( t − τ ) t=0 \quad f_{2}(t-\tau) t=0f2(tτ) 未移动
t > 0 f 2 ( t − τ ) t>0 \quad f_{2}(t-\tau) t>0f2(tτ) 右移
t < 0 f 2 ( t − τ ) t<0 \quad f_{2}(t-\tau) t<0f2(tτ) 左移
在这里插入图片描述
t t t − ∞ -\infty + ∞ , +\infty, +, 对应 f 2 ( t − τ ) f_{2}(t-\tau) f2(tτ) 从左往右移动
在这里插入图片描述
t≤-1时
在这里插入图片描述
两波形没有公共处,二者乘积为 0 , 0, 0, 即积分为 0
f 1 ( τ ) ⋅ f 2 ( t − τ ) = 0 g ( t ) = f 1 ( t ) ∗ f 2 ( t ) = 0 \begin{array}{l} f_{1}(\tau) \cdot f_{2}(t-\tau)=0 \\ g(t)=f_{1}(t) * f_{2}(t)=0 \end{array} f1(τ)f2(tτ)=0g(t)=f1(t)f2(t)=0

− 1 ≤ t ≤ 1 -1 \leq t \leq 1 1t1
在这里插入图片描述

两波形有公共部分,积分开始不为0,积分下限-1,上限 t , t t, t t,t 为移动时间;
g ( t ) = ∫ − 1 t f 1 ( τ ) ⋅ f 2 ( t − τ ) d τ = ∫ − 1 t 1 ⋅ 1 2 ⋅ ( t − τ ) d τ = t 2 4 + t 2 + 1 4 g(t)=\int_{-1}^{t} f_{1}(\tau) \cdot f_{2}(t-\tau) d \tau=\int_{-1}^{t} 1 \cdot \frac{1}{2} \cdot(t-\tau) d \tau=\frac{t^{2}}{4}+\frac{t}{2}+\frac{1}{4} g(t)=1tf1(τ)f2(tτ)dτ=1t121(tτ)dτ=4t2+2t+41

1 ≤ t ≤ 2 1 \leq t \leq 2 1t2 { t − 3 ≤ − 1 t ≥ 1 \left\{\begin{aligned} t-3 & \leq-1 \\ t & \geq 1 \end{aligned}\right. {t3t11
在这里插入图片描述
g ( t ) = ∫ − 1 1 1 ⋅ 1 2 ⋅ ( t − τ ) d τ = t g(t)=\int_{-1}^{1} 1 \cdot \frac{1}{2} \cdot(t-\tau) d \tau=t g(t)=11121(tτ)dτ=tv

2 ≤ t ≤ 4 2 \leq t \leq 4 2t4 { t − 3 ≥ − 1 t − 3 ≤ 1 \left\{\begin{array}{l}t-3 \geq-1 \\ t-3 \leq 1\end{array}\right. {t31t31
在这里插入图片描述
g ( t ) = ∫ t − 3 1 1 ⋅ 1 2 ⋅ ( t − τ ) d τ = − t 2 4 + t 2 + 2 g(t)=\int_{t-3}^{1} 1 \cdot \frac{1}{2} \cdot(t-\tau) d \tau=-\frac{t^{2}}{4}+\frac{t}{2}+2 g(t)=t31121(tτ)dτ=4t2+2t+2

4 ≤ t 4 \leq t 4t 时, 即 t − 3 ≥ 1 t-3 \geq 1 t31
在这里插入图片描述
g ( t ) = 0 g(t)=0 g(t)=0

g ( t ) = { t 2 4 + t 2 + 1 4 − 1 ≤ t ≤ 1 t 1 ≤ t ≤ 2 − t 2 4 + t 2 + 2 2 ≤ t ≤ 4 0  其它  t g(t)=\left\{\begin{array}{cc}\frac{t^{2}}{4}+\frac{t}{2}+\frac{1}{4} & -1 \leq t \leq 1 \\ t & {1 \leq t \leq 2} \\ -\frac{t^{2}}{4}+\frac{t}{2}+2 & 2 \leq t \leq 4 \\ 0 & \text { 其它 } t\end{array}\right. g(t)=4t2+2t+41t4t2+2t+201t11t22t4 其它 t
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意卷积前后的定义域,是原来两个定义域左右相加。

卷积积分性质

代数性质

交换律
f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_{1}(t) * f_{2}(t)=f_{2}(t) * f_{1}(t) f1(t)f2(t)=f2(t)f1(t)
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f_{1}(t) * f_{2}(t)=\int_{-\infty}^{+\infty} f_{1}(\tau) f_{2}(t-\tau) \mathrm{d} \tau f1(t)f2(t)=+f1(τ)f2(tτ)dτ
t − τ = λ τ : ∫ − ∞ + ∞ ⟶ λ : ∫ + ∞ − ∞ d τ = − d λ t-\tau=\lambda \quad \tau: \quad \int_{-\infty}^{+\infty} \longrightarrow \lambda: \int_{+\infty}^{-\infty} \quad \mathrm{d} \tau=-\mathrm{d} \lambda tτ=λτ:+λ:+dτ=dλ
得: f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 2 ( λ ) f 1 ( t − λ ) d λ = f 2 ( t ) ∗ f 1 ( t ) \quad f_{1}(t) * f_{2}(t)=\int_{-\infty}^{+\infty} f_{2}(\lambda) f_{1}(t-\lambda) \mathrm{d} \lambda=f_{2}(t) * f_{1}(t) f1(t)f2(t)=+f2(λ)f1(tλ)dλ=f2(t)f1(t)
卷积结果与交换两函数的次序无关。因为倒置 f 1 ( t ) f_{1}(t) f1(t) 与倒置 f 2 ( t ) , f_{2}(t), f2(t), 积分面积 与t无关。
一般选简单函数为移动函数。如矩形脉冲或 δ ( t ) \delta(t) δ(t)
分配律:
f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) f_{1}(t) *\left[f_{2}(t)+f_{3}(t)\right]=f_{1}(t) * f_{2}(t)+f_{1}(t) * f_{3}(t) f1(t)[f2(t)+f3(t)]=f1(t)f2(t)+f1(t)f3(t)

结合律:
f 1 ( t ) ∗ f 2 ( t ) ∗ f 3 ( t ) = f 1 ( t ) ∗ [ f 2 ( t ) ∗ f 3 ( t ) ] f_{1}(t) * f_{2}(t) * f_{3}(t)=f_{1}(t) *\left[f_{2}(t) * f_{3}(t)\right] f1(t)f2(t)f3(t)=f1(t)[f2(t)f3(t)]

系统并联(分配律)
在这里插入图片描述
在这里插入图片描述
f ( t ) ∗ h 1 ( t ) + f ( t ) ∗ h 2 ( t ) = f ( t ) ∗ [ h 1 ( t ) + h 2 ( t ) ] f(t) * h_{1}(t)+f(t) * h_{2}(t)=f(t) *\left[h_{1}(t)+h_{2}(t)\right] f(t)h1(t)+f(t)h2(t)=f(t)[h1(t)+h2(t)]

h ( t ) = h 1 ( t ) + h 2 ( t ) h(t)=h_{1}(t)+h_{2}(t) h(t)=h1(t)+h2(t)
结论:子系统并联时, 总系统的冲激响应等于各子系统冲激响应之和。

系统级联(结合律)
在这里插入图片描述
h ( t ) = h 1 ( t ) ∗ h 2 ( t ) h(t)=h_{1}(t) * h_{2}(t) h(t)=h1(t)h2(t)
结论:时域中,子系统级联时, 总的冲激响应等于子系统冲激响应的卷积。

与冲激函数或阶跃函数的卷积

1. f ( t ) ∗ δ ( t ) = δ ( t ) ∗ f ( t ) = f ( t ) f(t) * \delta(t)=\delta(t) * f(t)=f(t) f(t)δ(t)=δ(t)f(t)=f(t)
证: δ ( t ) ∗ f ( t ) = ∫ − ∞ ∞ δ ( τ ) f ( t − τ ) d τ = ∫ − ∞ ∞ δ ( τ ) f ( t ) d τ = f ( t ) \delta(t) * f(t)=\int_{-\infty}^{\infty} \delta(\tau) f(t-\tau) d \tau=\int_{-\infty}^{\infty} \delta(\tau) f(t) d \tau=f(t) δ(t)f(t)=δ(τ)f(tτ)dτ=δ(τ)f(t)dτ=f(t)
f ( t ) δ ( t ) = f ( 0 ) δ ( t ) ( 取 样 性 质 ) f(t) \delta(t)=f(0) \delta(t)(取样性质) f(t)δ(t)=f(0)δ(t)
f ( t ) ∗ δ ( t − t 0 ) = f ( t − t 0 ) f(t) * \delta\left(t-t_{0}\right)=f\left(t-t_{0}\right) f(t)δ(tt0)=f(tt0)

2. f ( t ) ∗ δ ′ ( t ) = f ′ ( t ) f(t) * \delta^{\prime}(t)=f^{\prime}(t) f(t)δ(t)=f(t)
证: δ ′ ( t ) ∗ f ( t ) = ∫ − ∞ ∞ δ ′ ( τ ) f ( t − τ ) d τ = f ′ ( t ) \quad \delta^{\prime}(t) * f(t)=\int_{-\infty}^{\infty} \delta^{\prime}(\tau) f(t-\tau) d \tau=f^{\prime}(t) δ(t)f(t)=δ(τ)f(tτ)dτ=f(t)
f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t) f(t)δ(t)=f(0)δ(t)f(0)δ(t)
f ( t ) ∗ δ ( n ) ( t ) = f ( n ) ( t ) f(t) * \delta^{(n)}(t)=f^{(n)}(t) f(t)δ(n)(t)=f(n)(t)

3. f ( t ) ∗ ε ( t ) = ∫ − ∞ ∞ ε ( τ ) f ( t − τ ) d τ = ∫ − ∞ t f ( τ ) d τ f(t) * \varepsilon(t)=\int_{-\infty}^{\infty} \varepsilon(\tau) f(t-\tau) d \tau=\int_{-\infty}^{t} f(\tau) d \tau f(t)ε(t)=ε(τ)f(tτ)dτ=tf(τ)dτ
ε ( t ) ∗ ε ( t ) = t ε ( t ) \varepsilon(t) * \varepsilon(t)=t \varepsilon(t) ε(t)ε(t)=tε(t)

微积分性质
  1. d n d t n [ f 1 ( t ) ∗ f 2 ( t ) ] = d n f 1 ( t ) d t n ∗ f 2 ( t ) = f 2 ( t ) ∗ d n f 2 ( t ) d t n \frac{d^{n}}{d t^{n}}\left[f_{1}(t) * f_{2}(t)\right]=\frac{d^{n} f_{1}(t)}{d t^{n}} * f_{2}(t)=f_{2}(t) * \frac{d^{n} f_{2}(t)}{d t^{n}} dtndn[f1(t)f2(t)]=dtndnf1(t)f2(t)=f2(t)dtndnf2(t)
    证:上式
    = δ ( n ) ( t ) ∗ [ f 1 ( t ) ∗ f 2 ( t ) ] = [ δ ( n ) ( t ) ∗ f 1 ( t ) ] ∗ f 2 ( t ) = f 1 ( n ) ( t ) ∗ f 2 ( t ) =\delta^{(n)}(t) *\left[f_{1}(t) * f_{2}(t)\right] \\ =\left[\delta^{(n)}(t) * f_{1}(t)\right] * f_{2}(t)\\ =f_{1}^{(n)}(t) * f_{2}(t) =δ(n)(t)[f1(t)f2(t)]=[δ(n)(t)f1(t)]f2(t)=f1(n)(t)f2(t)
  2. ∫ − ∞ t [ f 1 ( τ ) ∗ f 2 ( τ ) ] d τ = [ ∫ − ∞ t f 1 ( τ ) d τ ] ∗ f 2 ( t ) = f 1 ( t ) ∗ [ ∫ − ∞ t f 2 ( τ ) d τ ] \int_{-\infty}^{t}\left[f_{1}(\tau) * f_{2}(\tau)\right] d \tau=\left[\int_{-\infty}^{t} f_{1}(\tau) d \tau\right] * f_{2}(t)=f_{1}(t) *\left[\int_{-\infty}^{t} f_{2}(\tau) d \tau\right] t[f1(τ)f2(τ)]dτ=[tf1(τ)dτ]f2(t)=f1(t)[tf2(τ)dτ]
    证:上式 = ε ( t ) ∗ [ f 1 ( t ) ∗ f 2 ( t ) ] =\varepsilon(t) *\left[f_{1}(t) * f_{2}(t)\right] =ε(t)[f1(t)f2(t)]
    = [ ε ( t ) ∗ [ f 1 ( t ) ] ∗ f 2 ( t ) = f 1 ( − 1 ) ( t ) ∗ f 2 ( t ) =\left[\varepsilon(t) *\left[f_{1}(t)\right] * f_{2}(t)=f_{1}^{(-1)}(t) * f_{2}(t)\right. =[ε(t)[f1(t)]f2(t)=f1(1)(t)f2(t)
  3. f 1 ( − ∞ ) = f 2 ( − ∞ ) = 0 f_{1}(-\infty)=f_{2}(-\infty)=0 f1()=f2()=0 的前提下,
    f 1 ( t ) ∗ f 2 ( t ) = f 1 ′ ( t ) ∗ f 2 ( − 1 ) ( t ) f_{1}(t) * f_{2}(t)=f_{1}^{\prime}(t) * f_{2}^{(-1)}(t) f1(t)f2(t)=f1(t)f2(1)(t)
    上面的前提是必要的,反例是符号函数和冲激函数做卷积。
移位性质

若 f ( t ) = f 1 ( t ) ∗ f 2 ( t ) 则 f 1 ( t − t 1 ) ∗ f 2 ( t − t 2 ) = f 1 ( t − t 1 − t 2 ) ∗ f 2 ( t ) = f 1 ( t ) ∗ f 2 ( t − t 1 − t 2 ) = f ( t − t 1 − t 2 ) 若f(t)=f_{1}(t) * f_{2}(t) \\ 则 f_{1}\left(t-t_{1}\right) * f_{2}\left(t-t_{2}\right) \\ =f_{1}\left(t-t_{1}-t_{2}\right) * f_{2}(t) \\ =f_{1}(t) * f_{2}\left(t-t_{1}-t_{2}\right) \\ =f\left(t-t_{1}-t_{2}\right) f(t)=f1(t)f2(t)f1(tt1)f2(tt2)=f1(tt1t2)f2(t)=f1(t)f2(tt1t2)=f(tt1t2)
求解卷积的方法可归纳为:
(1) 利用定义式, 直接进行积分。对于容易求积分函数比较有效。如指 数函数,多项式函数等。
(2) 图解法。特别适用于求某时刻点上的卷积值。
(3) 利用性质。 三者常常结合起来使用。

例题

在这里插入图片描述
f 1 ( t ) , f 2 ( t ) f_{1}(t), f_{2}(t) f1(t),f2(t) 如图, 求 f 1 ( t ) ∗ f 2 ( t ) f_{1}(t) * f_{2}(t) f1(t)f2(t)
解: f 1 ( t ) = 2 ε ( t ) − 2 ε ( t − 1 ) f_{1}(t)=2 \varepsilon(t)-2 \varepsilon(t-1) f1(t)=2ε(t)2ε(t1)
f 2 ( t ) = ε ( t + 1 ) − ε ( t − 1 ) f 1 ( t ) ∗ f 2 ( t ) = 2 ε ( t ) ∗ ε ( t + 1 ) − 2 ε ( t ) ∗ ε ( t − 1 ) − 2 ε ( t − 1 ) ∗ ε ( t + 1 ) + 2 ε ( t − 1 ) ∗ ε ( t − 1 ) f_{2}(t)=\varepsilon(t+1)-\varepsilon(t-1) \\ f_{1}(t) * f_{2}(t) \\ =2 \varepsilon(t) * \varepsilon(t+1)-2 \varepsilon(t) * \varepsilon(t-1) \\ -2 \varepsilon(t-1) * \varepsilon(t+1)+2 \varepsilon(t-1) * \varepsilon(t-1) f2(t)=ε(t+1)ε(t1)f1(t)f2(t)=2ε(t)ε(t+1)2ε(t)ε(t1)2ε(t1)ε(t+1)+2ε(t1)ε(t1)
由于 ε ( t ) ∗ ε ( t ) = t ε ( t ) \varepsilon(t) * \varepsilon(t)=t \varepsilon(t) ε(t)ε(t)=tε(t)
依据时移特性, 有
f 1 ( t ) ∗ f 2 ( t ) = 2 ( t + 1 ) ε ( t + 1 ) − 2 ( t − 1 ) ε ( t − 1 ) − 2 t ε ( t ) + 2 ( t − 2 ) ε ( t − 2 ) f_{1}(t) * f_{2}(t) \\ =2(t+1) \varepsilon(t+1)-2(t-1) \varepsilon(t-1) \\ -2 t \varepsilon(t)+2(t-2) \varepsilon(t-2) f1(t)f2(t)=2(t+1)ε(t+1)2(t1)ε(t1)2tε(t)+2(t2)ε(t2)

相关函数

相关函数是鉴别信号的有力工具, 被广泛应用于雷达回波的识别, 通信同步信号的识别等领域。
相关是一种与卷积类似的运算。与卷积不同的是没有一个函数的反转。
把任意一个信号表示成冲激信号的各种线性组合,得到一种方便地求解复杂输入信号的响应的方法。

定义

实能量有限函数 f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t) 的互相关函数
R 12 ( t ) = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t − τ ) d t = ∫ − ∞ ∞ f 1 ( t + τ ) f 2 ( t ) d t R 21 ( τ ) = ∫ − ∞ ∞ f 1 ( t − τ ) f 2 ( t ) d t = ∫ − ∞ ∞ f 1 ( t ) f 2 ( t + τ ) d t R 12 ( τ ) = R 21 ( − τ ) 0 \begin{array}{l} R_{12}(t)=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t-\tau) d t=\int_{-\infty}^{\infty} f_{1}(t+\tau) f_{2}(t) d t \\ R_{21}(\tau)=\int_{-\infty}^{\infty} f_{1}(t-\tau) f_{2}(t) \mathrm{d} t=\int_{-\infty}^{\infty} f_{1}(t) f_{2}(t+\tau) \mathrm{d} t \\ \boldsymbol{R}_{12}(\tau)=\boldsymbol{R}_{21}(-\tau)_{0} \end{array} R12(t)=f1(t)f2(tτ)dt=f1(t+τ)f2(t)dtR21(τ)=f1(tτ)f2(t)dt=f1(t)f2(t+τ)dtR12(τ)=R21(τ)0

f 1 ( t ) = f 2 ( t ) = f ( t ) , f_{1}(t)=f_{2}(t)=f(t), f1(t)=f2(t)=f(t), 则得自相关函数
R ( τ ) = ∫ − ∞ ∞ f ( t ) f ( t − τ ) d t = ∫ − ∞ ∞ f ( t + τ ) f ( t ) d t R(\tau)=\int_{-\infty}^{\infty} f(t) f(t-\tau) \mathrm{d} t=\int_{-\infty}^{\infty} f(t+\tau) f(t) \mathrm{d} t \quad R(τ)=f(t)f(tτ)dt=f(t+τ)f(t)dt 显然, R ( − τ ) = R ( τ ) R(-\tau)=R(\tau) R(τ)=R(τ) 偶函数。

能量信号:能量有界,功率一定为0,离散变求和
功率信号:功率有界,E=∞,离散变求和
实功率有限信号相关函数的定义 f 1 ( t ) \quad f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t) 是功率有限信号
R 12 ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f 1 ( t ) f 2 ( t − τ ) d t ] R 21 ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f 2 ( t ) f 1 ( t − τ ) d t ] \begin{array}{l} R_{12}(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{1}(t) f_{2}(t-\tau) \mathrm{d} t\right] \\ R_{21}(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_{2}(t) f_{1}(t-\tau) \mathrm{d} t\right] \end{array} R12(τ)=limT[T12T2Tf1(t)f2(tτ)dt]R21(τ)=limT[T12T2Tf2(t)f1(tτ)dt]

自相关函数
R ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] R(\tau)=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] R(τ)=Tlim[T12T2Tf(t)f(tτ)dt]

例:求周期余弦信号 f ( t ) = E cos ⁡ ( ω 1 t ) f(t)=E \cos \left(\omega_{1} t\right) f(t)=Ecos(ω1t) 的自相关函数。
解:对此功率有限信号,由自相关函数的定义, 有
R ( τ ) = lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] = lim ⁡ T → ∞ E 2 T ∫ − T 2 T 2 cos ⁡ ( ω 1 t ) cos ⁡ [ ω 1 ( t − τ ) ] d t = lim ⁡ T → ∞ E 2 T ∫ − T 2 T 2 cos ⁡ ( ω 1 t ) [ cos ⁡ ( ω 1 t ) cos ⁡ ( ω 1 τ ) + sin ⁡ ( ω 1 t ) sin ⁡ ( ω 1 τ ) ] d t = lim ⁡ T → ∞ E 2 T cos ⁡ ( ω 1 τ ) ∫ − T 2 T 2 cos ⁡ 2 ( ω 1 t ) d t = E 2 2 cos ⁡ ( ω 1 τ ) \begin{aligned} R(\tau) &=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) f(t-\tau) \mathrm{d} t\right] \\ &=\lim _{T \rightarrow \infty} \frac{E^{2}}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \left(\omega_{1} t\right) \cos \left[\omega_{1}(t-\tau)\right] \mathrm{d} t \\ &=\lim _{T \rightarrow \infty} \frac{E^{2}}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos \left(\omega_{1} t\right)\left[\cos \left(\omega_{1} t\right) \cos \left(\omega_{1} \tau\right)+\sin \left(\omega_{1} t\right) \sin \left(\omega_{1} \tau\right)\right] \mathrm{d} t \\ &=\lim _{T \rightarrow \infty} \frac{E^{2}}{T} \cos \left(\omega_{1} \tau\right) \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos ^{2}\left(\omega_{1} t\right) \mathrm{d} t \\ &=\frac{E^{2}}{2} \cos \left(\omega_{1} \tau\right) \end{aligned} R(τ)=Tlim[T12T2Tf(t)f(tτ)dt]=TlimTE22T2Tcos(ω1t)cos[ω1(tτ)]dt=TlimTE22T2Tcos(ω1t)[cos(ω1t)cos(ω1τ)+sin(ω1t)sin(ω1τ)]dt=TlimTE2cos(ω1τ)2T2Tcos2(ω1t)dt=2E2cos(ω1τ)

结论:
周期信号自相关函数仍为周期信号,且周期相同。
自相关函数是一偶函数, R(0)为最大值。
余弦函数自相关函数仍为余弦; 同理可证, 任意相位的正弦、余弦之自相关函数仍为余弦。

相关与卷积的关系

相关与卷积的关系

R 12 ( t ) = ∫ − ∞ ∞ f 1 ( x ) f 2 ( x − t ) d x R_{12}(t)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(x-t) \mathrm{d} x R12(t)=f1(x)f2(xt)dx

f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ ∞ f 1 ( x ) f 2 ( t − x ) d x f_{1}(t)^{*} f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(x) f_{2}(t-x) \mathrm{d} x f1(t)f2(t)=f1(x)f2(tx)dx

R 12 ( t ) = f 1 ( t ) ∗ f 2 ( − t ) ; R 21 ( t ) = f 1 ( − t ) ∗ f 2 ( t ) R_{12}(t)=f_{1}(t)^{*} f_{2}(-t) ; R_{21}(t)=f_{1}(-t)^{*} f_{2}(t) R12(t)=f1(t)f2(t);R21(t)=f1(t)f2(t)

可见, 若 f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t) 均为实偶函数, 则卷积与相关完全相同。
上式只有负号的差别。

LTI离散系统求解

经典解法

y ( k ) + a n − 1 y ( k − 1 ) + ⋯ + a 0 y ( k − n ) = b m f ( k ) + b m − 1 f ( k − 1 ) + ⋯ + b 0 f ( k − m ) y(k)+a_{n-1} y(k-1)+\cdots +a_{0} y(k-n) \\ =b_{m} f(k)+b_{m-1} f(k-1)+\cdots+b_{0} f(k-m) y(k)+an1y(k1)++a0y(kn)=bmf(k)+bm1f(k1)++b0f(km)

与微分方程经典解类似, y ( k ) = y h ( k ) + y p ( k ) y(k)=y_{h}(k)+y_{p}(k) y(k)=yh(k)+yp(k)
齐次解: 齐次方程
y ( k ) + a n − 1 y ( k − 1 ) + ⋯ + a 0 y ( k − n ) = 0 y(k)+a_{n-1} y(k-1)+\cdots+a_{0} y(k-n)=0 y(k)+an1y(k1)++a0y(kn)=0

特征方程
1 + a n − 1 λ − 1 + ⋯ + a 0 λ − n = 0 λ n + a n − 1 λ n − 1 + ⋯ + a 0 = 0 \begin{array}{l} 1+a_{n-1} \lambda^{-1}+\cdots+a_{0} \lambda^{-n}=0 \\ \quad \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}=0 \end{array} 1+an1λ1++a0λn=0λn+an1λn1++a0=0

其根 λ i ( i = 1 , 2 , … , n ) \lambda_{i}(i=1,2, \ldots, n) λi(i=1,2,,n) 称为差分方程的特征根

根据特征根,齐次解的两种情况
1.无重根 λ 1 ≠ λ 2 ≠ ⋯ ≠ λ n \lambda_{1} \neq \lambda_{2} \neq \cdots \neq \lambda_{n} λ1=λ2==λn
y h ( k ) = C 1 λ 1 k + C 2 λ 2 k + ⋯ + C n λ n k y_{h}(k)=C_{1} \lambda_{1}^{k}+C_{2} \lambda_{2}^{k}+\cdots+C_{n} \lambda_{n}^{k} yh(k)=C1λ1k+C2λ2k++Cnλnk

2.有重根特征根 λ 为 r \lambda为 r λr 重根时
n  个待定系数  y h ( k ) = ⋯ + ( C r − 1 k r − 1 + C r − 2 k r − 2 + ⋯ + C 1 k + C 0 ) λ k + ⋯ \begin{array}{c} n \text { 个待定系数 } \\ y_{h}(k)=\cdots+\left(C_{r-1} k^{r-1}+C_{r-2} k^{r-2}+\cdots+C_{1} k+C_{0}\right) \lambda^{k}+\cdots \end{array} n 个待定系数 yh(k)=+(Cr1kr1+Cr2kr2++C1k+C0)λk+

特解

对应强迫响应
特解的形式与差分方程右边的形式(激励) 类似

激励f(t)响应 y ( t ) y(t) y(t) 的特解 y p ( t ) y_{p}(t) yp(t)
F(常数)P(常数)
k m km km P m k m + P m − 1 k m − 1 + ⋯ + P 1 k + P 0 ( 特 征 根 均 不 为 0 ) k r ( P m k m + P m − 1 k m − 1 + ⋯ + P 1 k + P 0 ) ( 有 r 重 0 特 征 根 ) P_{m} k^{m}+P_{m-1} k^{m-1}+\cdots+P_{1} k+P_{0} \quad( 特征根均不为0 )\\k^{r}\left(P_{m} k^{m}+P_{m-1} k^{m-1}+\cdots+P_{1} k+P_{0}\right) \quad( 有 r 重0特征根 ) Pmkm+Pm1km1++P1k+P0(0)kr(Pmkm+Pm1km1++P1k+P0)(r0)
a k a^{k} ak P a k ( a 不 等 于 特 征 根 ) ( P 1 k + P 0 ) a k ( α 是 特 征 单 根 ) ( P r k r + P r − 1 k r − 1 + ⋯ + P 1 k + P 0 ) a k ( a 是 r 重 特 征 根 ) P a^{k} \quad(a不等于特征根 )\\\left(P_{1} k+P_{0}\right) a^{k} \quad(\alpha 是特征单根 )\\\left(P_{r} k^{r}+P_{r-1} k^{r-1}+\cdots+P_{1} k+P_{0}\right) a^{k} \quad\left(a是r重特征根)\right. Pak(a)(P1k+P0)ak(α)(Prkr+Pr1kr1++P1k+P0)ak(ar)
cos ⁡ ( β t ) sin ⁡ ( β t ) \cos (\beta t) \sin (\beta t) cos(βt)sin(βt) P 1 cos ⁡ ( β t ) + P 2 sin ⁡ ( β t ) ( 特 征 根 不 等 于 e ± j β ) P_{1} \cos (\beta t)+P_{2} \sin (\beta t)(特征根不等于 \left.e^{\pm j \beta}\right) P1cos(βt)+P2sin(βt)e±jβ)

δ(k)找不到差分

例 : 系统方程 y ( k ) + 4 y ( k − 1 ) + 4 y ( k − 2 ) = f ( k ) , y(k)+4 y(k-1)+4 y(k-2)=f(k), y(k)+4y(k1)+4y(k2)=f(k), 已知初始条件 y ( 0 ) = 0 , y ( 1 ) = − 1 ; y(0)=0, y(1)=-1 ; y(0)=0,y(1)=1; 激励 f ( k ) = 2 k , k ≥ 0. f(k)=2^{k}, k \geq 0 . f(k)=2k,k0. 求方程的全解。
解: 特征方程为 λ 2 + 4 λ + 4 = 0 \lambda^{2}+4 \lambda+4=0 λ2+4λ+4=0
特征根 λ 1 = λ 2 = − 2 \lambda_{1}=\lambda_{2}=-2 \quad λ1=λ2=2 齐次解 y h ( k ) = ( C 1 k + C 2 ) ( − 2 ) k \quad y_{h}(k)=\left(C_{1} k+C_{2}\right)(-2)^{k} yh(k)=(C1k+C2)(2)k
特解为 y p ( k ) = P ( 2 ) k k ≥ 0 y_{p}(k)=P(2)^{k} \quad k \geq 0 yp(k)=P(2)kk0
代入差分方程得 P ( 2 ) k + 4 P ( 2 ) k − 1 + 4 P ( 2 ) k − 2 = 2 k P(2)^{k}+4 P(2)^{k-1}+4 P(2)^{k-2}=2^{k} P(2)k+4P(2)k1+4P(2)k2=2k
解得 P = 1 4 ; P=\frac{1} {4} ; \quad P=41; 特解: y p ( k ) = 2 k − 2 k ≥ 0 \quad y_{p}(k)=2^{k-2} \quad k \geq 0 yp(k)=2k2k0
全解: y ( k ) = y h ( k ) + y p ( k ) = ( C 1 k + C 2 ) ( − 2 ) k + 2 k − 2 k ≥ 0 \quad y(k)=y_{h}(k)+y_{p}(k)=\left(C_{1} k+C_{2}\right)(-2)^{k}+2^{k-2} \quad k \geq 0 y(k)=yh(k)+yp(k)=(C1k+C2)(2)k+2k2k0
代入初始条件解得: C 1 = 1 , C 2 = − 1 4 \quad C_{1}=1, \quad C_{2}=-\frac{1} {4} C1=1,C2=41
y ( k ) = [ ( k − 1 4 ) ( − 2 ) k + 2 k − 2 ] ε ( k ) y(k)=\left[\left(k-\frac{1}{4}\right)(-2)^{k}+2^{k-2}\right] \varepsilon(k) y(k)=[(k41)(2)k+2k2]ε(k)

零输入和零状态

y ( k ) = y z i ( k ) + y z s ( k ) y(k)=y_{\mathrm{zi}}(k)+y_{\mathrm{zs}}(k) y(k)=yzi(k)+yzs(k)

零输入响应:输入为零,差分方程为齐次方程 齐次解形式: C λ k C \lambda^{k} Cλk
C C C 由初始状态定 (相当于0-的条件)
零状态响应:初始状态为0,即
y z s ( − 1 ) = 0 , y z s ( − 2 ) = 0 , … y_{\mathrm{zs}}(-1)=0, \quad y_{\mathrm{zs}}(-2)=0, \ldots yzs(1)=0,yzs(2)=0,

 求解方法  {  经典法:齐次解+特解   卷积法(不再是卷积积分,而是卷积和)  \text { 求解方法 }\left\{\begin{array}{l} \text { 经典法:齐次解+特解 } \\ \text { 卷积法(不再是卷积积分,而是卷积和) } \end{array}\right.  求解方法 { 经典法:齐次解+特解  卷积法(不再是卷积积分,而是卷积和) 

y ( 0 − ) y ( 0 + ) y ( − 1 ) y\left(0_{-}\right) \quad y\left(0_{+}\right) \quad y(-1) y(0)y(0+)y(1)
y ′ ( 0 − ) y ′ ( 0 + ) ∇ y ( − 1 ) = y ( − 1 ) − y ( − 2 ) ∇ y ( 1 ) = y ( 1 ) − y ( 0 ) y^{\prime}\left(0_{-}\right) \quad y^{\prime}\left(0_{+}\right) \quad \nabla y(-1)=y(-1)-y(-2) \quad \nabla y(1)=y(1)-y(0) y(0)y(0+)y(1)=y(1)y(2)y(1)=y(1)y(0)
y ′ ′ ( 0 − ) y ′ ′ ( 0 + ) ∇ 2 y ( − 1 ) = y ( − 1 ) − 2 y ( − 2 ) + y ( − 3 ) ∇ 2 y ( 2 ) = y ( 2 ) − 2 y ( 1 ) + y ( 0 ) y^{\prime \prime}\left(0_{-}\right) \quad y^{\prime \prime}\left(0_{+}\right) \quad \nabla^{2} y(-1)=y(-1)-2 y(-2)+y(-3) \nabla^{2} y(2)=y(2)-2 y(1)+y(0) y(0)y(0+)2y(1)=y(1)2y(2)+y(3)2y(2)=y(2)2y(1)+y(0)
y n − 1 ( 0 − ) y n − 1 ( 0 + ) ∇ n − 1 y ( − 1 ) ∇ n − 1 y ( n − 1 ) y^{n-1}\left(0_{-}\right) \quad y^{n-1}\left(0_{+}\right) \quad \nabla^{n-1} y(-1)\quad \nabla^{n-1} y(n-1) yn1(0)yn1(0+)n1y(1)n1y(n1)

初始条件给定y(-1)y(-2)y(-3)依次类推
前面是输入加入之前,输入加入以后是0+之后。

例2:系统方程为 y ( k ) + 3 y ( k − 1 ) + 2 y ( k − 2 ) = f ( k ) y(k)+3 y(k-1)+2 y(k-2)=f(k) y(k)+3y(k1)+2y(k2)=f(k) 已知激励 f ( k ) = 2 k , k ≥ 0 , f(k)=2^{k}, \quad k \geq 0, f(k)=2k,k0, 初始状态 y ( − 1 ) = 0 , y ( − 2 ) = 0.5 , y(-1)=0, y(-2)=0.5, y(1)=0,y(2)=0.5, 求系统的零输入响应、零状态响应。
解:
(1) 零输入响应 y z i ( k ) y_{\mathrm{zi}}(k) yzi(k) 满足方程
y z i ( k ) + 3 y z i ( k − 1 ) + 2 y z i ( k − 2 ) = 0 y z i ( − 1 ) = y ( − 1 ) = 0 , y z i ( − 2 ) = y ( − 2 ) = 0.5 \begin{array}{l} y_{\mathrm{zi}}(k)+3 y_{\mathrm{zi}}(k-1)+2 y_{\mathrm{zi}}(k-2)=0 \\ y_{\mathrm{zi}}(-1)=y(-1)=0, y_{\mathrm{zi}}(-2)=y(-2)=0.5 \end{array} yzi(k)+3yzi(k1)+2yzi(k2)=0yzi(1)=y(1)=0,yzi(2)=y(2)=0.5

递推求出初始值 y z i ( 0 ) , y z i ( 1 ) y_{\mathrm{zi}}(0), y_{\mathrm{zi}}(1) yzi(0),yzi(1)
y z i ( 0 ) = − 3 y z i ( − 1 ) − 2 y z i ( − 2 ) = − 1 y_{\mathrm{zi}}(0)=-3 y_{\mathrm{zi}}(-1)-2 y_{\mathrm{zi}}(-2)=-1 yzi(0)=3yzi(1)2yzi(2)=1

y z i ( 1 ) = − 3 y z i ( 0 ) − 2 y z i ( − 1 ) = 3 y_{\mathrm{zi}}(1)=-3 y_{\mathrm{zi}}(0)-2 y_{\mathrm{zi}}(-1)=3 yzi(1)=3yzi(0)2yzi(1)=3

特征方程为 λ 2 + 3 λ + 2 = 0 \lambda^{2}+3 \lambda+2=0 λ2+3λ+2=0
特征根: λ 1 = − 1 , λ 2 = − 2 \lambda_{1}=-1, \quad \lambda_{2}=-2 λ1=1,λ2=2

y z i ( k ) = C z i 1 ( − 1 ) k + C z i 2 ( − 2 ) k y_{\mathrm{zi}}(k)=C_{\mathrm{zi} 1}(-1)^{k}+C_{\mathrm{zi} 2}(-2)^{k} yzi(k)=Czi1(1)k+Czi2(2)k

将初始值 y z i ( 0 ) = − 1 , y z i ( 1 ) = 3 y_{\mathrm{zi}}(0)=-1, y_{\mathrm{zi}}(1)=3 yzi(0)=1,yzi(1)=3 代入并解得
y z i ( k ) = ( − 1 ) k − 2 ( − 2 ) k , k ≥ 0 y_{\mathrm{zi}}(k)=(-1)^{k}-2(-2)^{k}, \quad k \geq 0 yzi(k)=(1)k2(2)k,k0

(2) 零状态响应 y z S ( k ) y_{\mathrm{zS}}(k) yzS(k) 满足
y z S ( k ) + 3 y z S ( k − 1 ) + 2 y z S ( k − 2 ) = f ( k ) y z S ( − 1 ) = y z S ( − 2 ) = 0 \begin{array}{l} y_{\mathrm{zS}}(k)+3 y_{\mathrm{zS}}(k-1)+2 y_{\mathrm{zS}}(k-2)=f(k) \\ y_{\mathrm{z} S}(-1)=y_{\mathrm{z} S}(-2)=0 \end{array} yzS(k)+3yzS(k1)+2yzS(k2)=f(k)yzS(1)=yzS(2)=0

递推求初始值 y z S ( 0 ) , y z S ( 1 ) y_{\mathrm{zS}}(0), y_{\mathrm{zS}}(1) yzS(0),yzS(1)
y z S ( 0 ) = − 3 y z S ( − 1 ) − 2 y z i ( − 2 ) + 2 0 = 1 y_{\mathrm{zS}}(0)=-3 y_{\mathrm{z} S}(-1)-2 y_{\mathrm{zi}}(-2)+2^{0}=1 yzS(0)=3yzS(1)2yzi(2)+20=1

y z S ( 1 ) = − 3 y z S ( 0 ) − 2 y z i ( − 1 ) + 2 1 = − 1 y_{\mathrm{zS}}(1)=-3 y_{\mathrm{zS}}(0)-2 y_{\mathrm{zi}}(-1)+2^{1}=-1 yzS(1)=3yzS(0)2yzi(1)+21=1

分别求出齐次解和特解,得
y z S ( 0 ) = 1 , y z s ( − 1 ) = − 1 y_{\mathrm{zS}}(0)=1, y_{\mathrm{zs}}(-1)=-1 yzS(0)=1,yzs(1)=1

y z S ( k ) = C z 1 ( − 1 ) k + C z 2 ( − 2 ) k + y p ( k ) = C z S 1 ( − 1 ) k + C z s 2 ( − 2 ) k + 1 3 ( 2 ) k \begin{aligned} y_{\mathrm{z} S}(k)=& C_{\mathrm{z} 1}(-1)^{k}+C_{\mathrm{z} 2}(-2)^{k}+y_{p}(k) \\ &=C_{\mathrm{z} S 1}(-1)^{k}+C_{\mathrm{zs} 2}(-2)^{k}+\frac{1}{3}(2)^{k} \end{aligned} yzS(k)=Cz1(1)k+Cz2(2)k+yp(k)=CzS1(1)k+Czs2(2)k+31(2)k

代入初始值递推得 y z S ( 0 ) = 1 , y z S ( 1 ) = − 1 \quad y_{\mathrm{z} S}(0)=1, y_{\mathrm{zS}}(1)=-1 yzS(0)=1,yzS(1)=1
C z 1 = 1 3 , C z S 2 = 1 y z S ( k ) = − 1 3 ( − 1 ) k + ( − 2 ) k + 1 3 ( 2 ) k , k ≥ 0 y ( k ) = y z i ( k ) + y z S ( k ) = ( − 1 ) k − 2 ( − 2 ) k − 1 3 ( − 1 ) k + ( − 2 ) k + 1 3 ( 2 ) k k ≥ 0 = [ 2 3 ( − 1 ) k − ( − 2 ) k + 1 3 ( 2 ) k ] ε ( k ) \begin{array}{c} C_{\mathrm{z} 1}=\frac{1}{3}, \quad C_{\mathrm{z} S 2}=1 \\ y_{\mathrm{z} S}(k)=-\frac{1}{3}(-1)^{k}+(-2)^{k}+\frac{1}{3}(2)^{k}, \quad k \geq 0 \\ y(k)=y_{\mathrm{z} i}(k)+y_{\mathrm{z} S}(k)=(-1)^{k}-2(-2)^{k}-\frac{1}{3}(-1)^{k}+(-2)^{k}+\frac{1}{3}(2)^{k} \quad k \geq 0 \\ =\left[\frac{2}{3}(-1)^{k}-(-2)^{k}+\frac{1}{3}(2)^{k}\right] \varepsilon(k) \end{array} Cz1=31,CzS2=1yzS(k)=31(1)k+(2)k+31(2)k,k0y(k)=yzi(k)+yzS(k)=(1)k2(2)k31(1)k+(2)k+31(2)kk0=[32(1)k(2)k+31(2)k]ε(k)

单位序列响应δ(k)→h(k)和阶跃响应ε(k)→g(k)

在这里插入图片描述

单位序列响应:单位序列 δ ( k ) \delta(k) δ(k) 所引起的零状态响应, 记为 h ( k ) h(k) h(k)
h ( − i ) = 0 , i = 1 , 2 , 3 , … , n h(-i)=0, \quad i=1,2,3, \ldots, n h(i)=0,i=1,2,3,,n

\quad 系统方程为 y ( k ) − y ( k − 1 ) − 2 y ( k − 2 ) = f ( k ) − f ( k − 2 ) y(k)-y(k-1)-2 y(k-2)=f(k)-f(k-2) y(k)y(k1)2y(k2)=f(k)f(k2)
求单位序列响应 h ( k ) h(k) h(k)
解: h ( k ) h(k) h(k) 满足
h ( k ) − h ( k − 1 ) − 2 h ( k − 2 ) = δ ( k ) − δ ( k − 2 ) h(k)-h(k-1)-2 h(k-2)=\delta(k)-\delta(k-2) h(k)h(k1)2h(k2)=δ(k)δ(k2)

令方程右边只有 δ ( k ) \delta(k) δ(k) 作用时, 系统的单位序列响应 h 1 ( k ) h_{1}(k) h1(k), 它满足:
h 1 ( k ) − h 1 ( k − 1 ) − 2 h 1 ( k − 2 ) = δ ( k ) h_{1}(k)-h_{1}(k-1)-2 h_{1}(k-2)=\delta(k) h1(k)h1(k1)2h1(k2)=δ(k)

根据线性时不变性
h ( k ) = h 1 ( k ) − h 1 ( k − 2 ) = [ 1 3 ( − 1 ) k + 2 3 ( 2 ) k ] ε ( k ) − [ 1 3 ( − 1 ) k − 2 + 2 3 ( 2 ) k − 2 ] ε ( k − 2 ) \begin{array}{l} h(k)=h_{1}(k)-h_{1}(k-2) \\ =\left[\frac{1}{3}(-1)^{k}+\frac{2}{3}(2)^{k}\right] \varepsilon(k)-\left[\frac{1}{3}(-1)^{k-2}+\frac{2}{3}(2)^{k-2}\right] \varepsilon(k-2) \end{array} h(k)=h1(k)h1(k2)=[31(1)k+32(2)k]ε(k)[31(1)k2+32(2)k2]ε(k2)

单位阶跃响应
在这里插入图片描述
单位序列 ε ( k ) \varepsilon(k) ε(k) 所引起的零状态响应,记为 g ( k ) g(k) g(k)
g ( − i ) = 0 , i = 1 , 2 , 3 , … , n g(-i)=0, \quad i=1,2,3, \ldots, n g(i)=0,i=1,2,3,,n

单位阶跃响应求解

  1. 经典解 经典解=齐次解+特解
  2. 线性性质求解
    在这里插入图片描述
    h ( k ) ⟷ ( k ) = ε ( k ) − ε ( k − 1 ) h ( k − 1 ) δ ( k − 1 ) = ε ( k − 1 ) − ε ( k − 2 ) h ( k − 2 ) δ ( k − 2 ) = ε ( k − 2 ) − ε ( k − 3 ) ⋯ δ ( − ∞ ) = \begin{array}{lr}h(k) \longleftrightarrow(k)=\varepsilon(k)-\varepsilon(k-1) \\ h(k-1) & \delta(k-1)=\varepsilon(k-1)-\varepsilon(k-2) \\ h(k-2) & \delta(k-2)=\varepsilon(k-2)-\varepsilon(k-3) \\ \cdots & \quad \delta(-\infty)=\end{array} h(k)(k)=ε(k)ε(k1)h(k1)h(k2)δ(k1)=ε(k1)ε(k2)δ(k2)=ε(k2)ε(k3)δ()=

{  两个常用的   求和公式:  { ∑ j = k 1 k 2 a j = { a k 1 − a k 2 + 1 1 − a a ≠ 1 k 2 − k 1 + 1 a = 1 ∑ j = k 1 k 2 j = ( k 2 + k 1 ) ( k 2 − k 1 + 1 ) 2 \left\{\begin{array}{l}\text { 两个常用的 } \\ \text { 求和公式: }\end{array} \quad\left\{\begin{array}{ll}\sum\limits_{j=k_{1}}^{k_{2}} a^{j}=\left\{\begin{array}{ll}\frac{a^{k_{1}}-a^{k_{2}+1}}{1-a} & a \neq 1 \\ k_{2}-k_{1}+1 & a=1 \end{array}\right.\\ \sum\limits_{j=k_{1}}^{k_{2}} j=\frac{\left(k_{2}+k_{1}\right)\left(k_{2}-k_{1}+1\right)}{2}\end{array}\right.\right.  两个常用的  求和公式j=k1k2aj={1aak1ak2+1k2k1+1a=1a=1j=k1k2j=2(k2+k1)(k2k1+1)
k2≥k1

例2: 系统方程为 y ( k ) − y ( k − 1 ) − 2 y ( k − 2 ) = f ( k ) − f ( k − 2 ) y(k)-y(k-1)-2 y(k-2)=f(k)-f(k-2) y(k)y(k1)2y(k2)=f(k)f(k2)求单位序列响应 g ( k ) g(k) g(k)
解: 例1中求得 h ( k ) h(k) h(k)

g ( k ) = ∑ j = − ∞ k h ( j ) g(k)=\sum\limits_{j=-\infty}^{k} h(j) g(k)=j=kh(j)
h ( k ) = h 1 ( k ) − h 1 ( k − 2 ) = [ 1 3 ( − 1 ) k + 2 3 ( 2 ) k ] ε ( k ) − [ 1 3 ( − 1 ) k − 2 + 2 3 ( 2 ) k − 2 ] ε ( k − 2 ) \begin{array}{l} h(k)=h_{1}(k)-h_{1}(k-2) \\ =\left[\frac{1}{3}(-1)^{k}+\frac{2}{3}(2)^{k}\right] \varepsilon(k)-\left[\frac{1}{3}(-1)^{k-2}+\frac{2}{3}(2)^{k-2}\right] \varepsilon(k-2) \end{array} h(k)=h1(k)h1(k2)=[31(1)k+32(2)k]ε(k)[31(1)k2+32(2)k2]ε(k2)
根据上面提到的求和公式
g ( k ) = ∑ j = − ∞ k h ( j ) g(k)=\sum_{j=-\infty}^{k} h(j) g(k)=j=kh(j)
g 1 ( k ) = ∑ j = − ∞ k [ 1 3 ( − 1 ) j + 2 3 ( 2 ) j ] ε ( j ) = { ∑ j = 0 k [ 1 3 ( − 1 ) j + 2 3 ( 2 ) j ] } ε ( k ) g_{1}(k)=\sum_{j=-\infty}^{k}\left[\frac{1}{3}(-1)^{j}+\frac{2}{3}(2)^{j}\right] \varepsilon(j)=\left\{\sum_{j=0}^{k}\left[\frac{1}{3}(-1)^{j}+\frac{2}{3}(2)^{j}\right]\right\} \varepsilon(k) g1(k)=j=k[31(1)j+32(2)j]ε(j)={j=0k[31(1)j+32(2)j]}ε(k)
= [ 1 3 ⋅ 1 − ( − 1 ) k + 1 2 + 2 3 ⋅ 1 − 2 k + 1 − 1 ] ε ( k ) = [ 1 6 ( − 1 ) k + 2 ( 2 ) k − 1 2 ] ε ( k ) =\left[\frac{1}{3} \cdot \frac{1-(-1)^{k+1}}{2}+\frac{2}{3} \cdot \frac{1-2^{k+1}}{-1}\right] \varepsilon(k)=\left[\frac{1}{6}(-1)^{k}+2(2)^{k}-\frac{1}{2}\right] \varepsilon(k) =[3121(1)k+1+32112k+1]ε(k)=[61(1)k+2(2)k21]ε(k)
g ( k ) = g 1 ( k ) − g 1 ( k − 2 ) g(k)=g_{1}(k)-g_{1}(k-2) g(k)=g1(k)g1(k2)
= [ 1 6 ( − 1 ) k + 2 ( 2 ) k − 1 2 ] ε ( k ) − [ 1 6 ( − 1 ) k − 2 + 2 ( 2 ) k − 2 − 1 2 ] ε ( k − 2 ) \quad=\left[\frac{1}{6}(-1)^{k}+2(2)^{k}-\frac{1}{2}\right] \varepsilon(k)-\left[\frac{1}{6}(-1)^{k-2}+2(2)^{k-2}-\frac{1}{2}\right] \varepsilon(k-2) =[61(1)k+2(2)k21]ε(k)[61(1)k2+2(2)k221]ε(k2)

卷积和的定义与计算

序列的时域分解

在这里插入图片描述
任意序列 f ( k ) f(k) f(k) 可表示为:
f ( k ) = ⋯ + f ( − 1 ) δ ( k + 1 ) + f ( 0 ) δ ( k ) + f ( 1 ) δ ( k − 1 ) + ⋯ + f ( i ) δ ( k − i ) = ∑ i = − ∞ + ∞ f ( i ) δ ( k − i ) \begin{aligned} f(k)=& \cdots+f(-1) \delta(k+1)+f(0) \delta(k)+f(1) \delta(k-1) +\cdots+f(i) \delta(k-i) & \\ =& \sum_{i=-\infty}^{+\infty} f(i) \delta(k-i) \end{aligned} f(k)==+f(1)δ(k+1)+f(0)δ(k)+f(1)δ(k1)++f(i)δ(ki)i=+f(i)δ(ki)

任意序列作用下的零状态响应

在这里插入图片描述

卷积和的定义(解决换一个信号就要重新求解的问题)

已知定义在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上的两个函数 f 1 ( k ) f_{1}(k) f1(k) f 2 ( k ) , f_{2}(k), f2(k), 则定义和
f ( k ) = ∑ i = − ∞ + ∞ f 1 ( k ) f 2 ( k − i ) f(k)=\sum_{i=-\infty}^{+\infty} f_{1}(k) f_{2}(k-i) f(k)=i=+f1(k)f2(ki)

f 1 ( k ) f_{1}(k) f1(k) f 2 ( k ) f_{2}(k) f2(k) 的卷积和, 简称卷积; 记为
f ( k ) = f 1 ( k ) ∗ f 2 ( k ) f(k)=f_{1}(k) * f_{2}(k) f(k)=f1(k)f2(k)

注意:求和是在虚设的变量 i 下进行的, i 为求和变量, k 为参变量。结果仍为 k 的函数。

f ( k ) = ∑ i = − ∞ + ∞ f ( i ) δ ( k − i ) = f ( k ) ∗ δ ( k ) f(k)=\sum\limits_{i=-\infty}^{+\infty} f(i) \delta(k-i)=f(k) * \delta(k) f(k)=i=+f(i)δ(ki)=f(k)δ(k)
y z s ( k ) = ∑ i = − ∞ + ∞ f ( i ) h ( k − i ) = f ( k ) ∗ h ( k ) y_{z s}(k)=\sum\limits_{i=-\infty}^{+\infty} f(i) h(k-i)=f(k) * h(k) yzs(k)=i=+f(i)h(ki)=f(k)h(k)

卷积和的计算(yzs(k)的求解)

由于系统的因果性或激励信号存在时间的局限性, 卷积和的累加限会有所变化。卷积和中累加限的确定是非常关键的。
例: f ( k ) = a k ε ( k ) , h ( k ) = b k ε ( k ) , 求 y z s ( k ) f(k)=a^{k} \varepsilon(k), \quad h(k)=b^{k} \varepsilon(k), 求 y_{z s}(k) f(k)=akε(k),h(k)=bkε(k),yzs(k)
y z S ( k ) = f ( k ) ∗ h ( k ) = ∑ i = − ∞ + ∞ f ( i ) h ( k − i ) = ∑ i = − ∞ + ∞ a i ε ( i ) b k − i ε ( k − i ) = [ ∑ i = 0 k a i b k − i ] ε ( k ) = b k [ ∑ i = 0 k ( a b ) i ] ε ( k ) = { [ b k 1 − ( a / b ) k + 1 1 − a / b ] ε ( k ) , a ≠ b b k ( k + 1 ) ε ( k ) , a = b \Large y_{z S}(k) =f(k) * h(k)\\ =\sum\limits_{i=-\infty}^{+\infty} f(i) h(k-i)\\ =\sum\limits_{i=-\infty}^{+\infty} a^{i} \varepsilon(i) b^{k-i} \varepsilon(k-i) \\ =\left[\sum\limits_{i=0}^{k} a^{i} b^{k-i}\right] \varepsilon(k)\\ =b^{k}\left[\sum\limits_{i=0}^{k}\left(\frac{a}{b}\right)^{i}\right] \varepsilon(k) \\ =\left\{\begin{array}{ll}{\left[b^{k} \frac{1-(a / b)^{k+1}}{1-a / b}\right]} \varepsilon(k), a \neq b \\ b^{k}(k+1) \varepsilon(k), a=b\end{array}\right. yzS(k)=f(k)h(k)=i=+f(i)h(ki)=i=+aiε(i)bkiε(ki)=i=0kaibkiε(k)=bki=0k(ba)iε(k)=[bk1a/b1(a/b)k+1]ε(k),a=bbk(k+1)ε(k),a=b
在这里插入图片描述
在这里插入图片描述
例:系统差分方程 y ( k ) − 0.5 y ( k − 1 ) = − f ( k ) + f ( k − 1 ) y(k)-0.5 y(k-1)=-f(k)+f(k-1) y(k)0.5y(k1)=f(k)+f(k1),初始条件 y ( − 1 ) = 0 y(-1)=0 y(1)=0, f ( k ) = k ε ( k ) + δ ( k ) + a k ε ( k ) , f(k)=k \varepsilon(k)+\delta(k)+a^{k} \varepsilon(k), f(k)=kε(k)+δ(k)+akε(k), 求系统的输出 y ( k ) , k ≥ 0 y(k), k \geq 0 y(k),k0
在这里插入图片描述
解法1,任意输入都要去寻找对应的特解, 需要根据特解表去转换, 但又没有线性性质
解法2,需要去寻找特解,但是利用线性性质, 可以扩展一下
解法3,不再去寻找特解,将所有的计算转化为求和的过程, 计算机来辅助计算。

卷积和的计算与性质

f ( k ) = ∑ i = − ∞ + ∞ f 1 ( i ) f 2 ( k − i ) f(k)=\sum\limits_{i=-\infty}^{+\infty} f_{1}(i) f_{2}(k-i) f(k)=i=+f1(i)f2(ki)
卷积过程可分解为四步:
(1) 换元:k换为 i → i \rightarrow i f 1 ( i ) , f 2 ( i ) f_{1}(i), \quad f_{2}(i) f1(i),f2(i)
(2) 反转平移:由 f 2 ( i ) f_{2}(i) f2(i) 反转一 f 2 ( − i ) f_{2}(-i) f2(i) 右移 k → f 2 ( k − i ) k \rightarrow f_{2}(k-i) kf2(ki)
(3) f 1 ( i ) f 2 ( k − i ) f_{1}(i) f_{2}(k-i) f1(i)f2(ki)
(4) 求和: i 从 - ∞到∞对乘积项求和。 注意: k 为参变量。
在这里插入图片描述
不进位乘法求卷积:
f ( k ) = ∑ i = − ∞ + ∞ f 1 ( i ) f 2 ( k − i ) = ⋯ f 1 ( − 1 ) f 2 ( k + 1 ) + f 1 ( 0 ) f 2 ( k ) + f 1 ( 1 ) f 2 ( k − 1 ) + ⋯ + f 1 ( i ) f 2 ( k − i ) + ⋯ \begin{aligned} f(k) &=\sum_{i=-\infty}^{+\infty} f_{1}(i) f_{2}(k-i) \\ &=\cdots f_{1}(-1) f_{2}(k+1)+f_{1}(0) f_{2}(k)+f_{1}(1) f_{2}(k-1)+\\ & \cdots+f_{1}(i) f_{2}(k-i)+\cdots \end{aligned} f(k)=i=+f1(i)f2(ki)=f1(1)f2(k+1)+f1(0)f2(k)+f1(1)f2(k1)++f1(i)f2(ki)+
f ( k ) f(k) f(k) =所有两序列序号之和为 k k k 的那些样本乘积之和。 如 k = 2 k=2 k=2
f ( k ) = ⋯ + f 1 ( − 1 ) f 2 ( 3 ) + f 1 ( 0 ) f 2 ( 2 ) + f 1 ( 1 ) f 2 ( 1 ) + f 1 ( 2 ) f 2 ( 0 ) + ⋯ f(k)=\cdots+f_{1}(-1) f_{2}(3)+f_{1}(0) f_{2}(2)+f_{1}(1) f_{2}(1)+f_{1}(2) f_{2}(0)+\cdots f(k)=+f1(1)f2(3)+f1(0)f2(2)+f1(1)f2(1)+f1(2)f2(0)+
例2: f 1 ( k ) = { ⋯   , 0 , f 1 ( 1 ) , f 1 ( 2 ) , f 1 ( 3 ) , 0 , ⋯   } f_{1}(k)=\left\{\cdots, 0, f_{1}(1), f_{1}(2), f_{1}(3), 0, \cdots\right\} f1(k)={,0,f1(1),f1(2),f1(3),0,}
f 2 ( k ) = { ⋯   , 0 , f 2 ( 0 ) , f 2 ( 1 ) , 0 , ⋯   } \quad f_{2}(k)=\left\{\cdots, 0, f_{2}(0), f_{2}(1), 0, \cdots\right\} f2(k)={,0,f2(0),f2(1),0,}
在这里插入图片描述

卷积边界的确定

在这里插入图片描述
y z S ( k ) y_{\mathrm{z} S}(k) yzS(k) 的元素个数?(滑动相乘求和
若: f ( k ) f(k) f(k) 序列 n 1 ≤ k ≤ n 2 n_{1} \leq k \leq n_{2} n1kn2
h ( k )  序列  n 3 ≤ k ≤ n 4 y z S ( k )  序列  ( n 1 + n 3 ) ≤ k ≤ ( n 2 + n 4 ) \begin{array}{ll} h(k) \text { 序列 } & n_{3} \leq k \leq n_{4} \\ y_{\mathrm{z} S}(k) \text { 序列 } & \left(n_{1}+n_{3}\right) \leq k \leq\left(n_{2}+n_{4}\right) \end{array} h(k) 序列 yzS(k) 序列 n3kn4(n1+n3)k(n2+n4)

例如: f ( k ) : 0 ≤ k ≤ 3 f(k): \quad 0 \leq k \leq 3 \quad f(k):0k3 4个元素
h ( k ) : 0 ≤ k ≤ 4 h(k): \quad 0 \leq k \leq 4 \quad h(k):0k4 5个元素
y z S ( k ) 0 ≤ k ≤ 7 y_{\mathrm{z} S}(k) \quad 0 \leq k \leq 7 \quad yzS(k)0k7 8个元素

卷积和的性质
  1. 满足乘法的三律:
    (1) 交换律,
    (2) 分配律,(3) 结合律.
  2. f ( k ) ∗ δ ( k ) = f ( k ) , f ( k ) ∗ δ ( k − k 0 ) = f ( k − k 0 ) f(k) * \delta(k)=f(k), \quad f(k) * \delta\left(k-k_{0}\right)=f\left(k-k_{0}\right) f(k)δ(k)=f(k),f(k)δ(kk0)=f(kk0)
  3. f ( k ) ∗ ε ( k ) = ∑ i = − ∞ k f ( i ) f(k) * \varepsilon(k)=\sum\limits_{i=-\infty}^{k} f(i) f(k)ε(k)=i=kf(i)
  4. f 1 ( k − k 1 ) ∗ f 2 ( k − k 2 ) = f 1 ( k − k 1 − k 2 ) ∗ f 2 ( k ) f_{1}\left(k-k_{1}\right) * f_{2}\left(k-k_{2}\right)\\ =f_{1}\left(k-k_{1}-k_{2}\right) * f_{2}(k) f1(kk1)f2(kk2)=f1(kk1k2)f2(k)
    = δ ( k − k 1 − k 2 ) ∗ f 1 ( k ) ∗ f 2 ( k ) =\delta\left(k-k_{1}-k_{2}\right) * f_{1}(k) * f_{2}(k) =δ(kk1k2)f1(k)f2(k)
  5. ∇ [ f 1 ( k ) ∗ f 2 ( k ) ] = ∇ f 1 ( k ) ∗ f 2 ( k ) = f 1 ( k ) ∗ ∇ f 2 ( k ) \nabla\left[f_{1}(k) * f_{2}(k)\right]=\nabla f_{1}(k) * f_{2}(k)=f_{1}(k) * \nabla f_{2}(k) [f1(k)f2(k)]=f1(k)f2(k)=f1(k)f2(k)
    在这里插入图片描述
    解: 根据 h ( k ) h(\mathrm{k}) h(k) 的定义,有
    h ( k ) = [ δ ( k ) ∗ h 1 ( k ) − δ ( k ) ∗ h 2 ( k ) ] ∗ h 1 ( k ) = h 1 ( k ) ∗ h 1 ( k ) − h 2 ( k ) ∗ h 1 ( k ) = ε ( k ) ∗ ε ( k ) − ε ( k − 5 ) ∗ ε ( k ) = ( k + 1 ) ε ( k ) − ( k + 1 − 5 ) ∗ ε ( k ) = ( k + 1 ) ε ( k ) − ( k − 4 ) ∗ ε ( k ) \begin{aligned} h(k) &=\left[\delta(k) * h_{1}(k)-\delta(k) * h_{2}(k)\right] * h_{1}(k) \\ &=h_{1}(k) * h_{1}(k)-h_{2}(k) * h_{1}(k) \\ &=\varepsilon(k) * \varepsilon(k)-\varepsilon(k-5) * \varepsilon(k) \\ &=(k+1) \varepsilon(k)-(k+1-5) * \varepsilon(k) \\ &=(k+1) \varepsilon(k)-(k-4) * \varepsilon(k) \end{aligned} h(k)=[δ(k)h1(k)δ(k)h2(k)]h1(k)=h1(k)h1(k)h2(k)h1(k)=ε(k)ε(k)ε(k5)ε(k)=(k+1)ε(k)(k+15)ε(k)=(k+1)ε(k)(k4)ε(k)

参考

中国大学MOOC湖南大学信号与系统慕课

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值