信号与系统-连续系统的时域分析

1. 系统定义

系统:若干相互关联的事物组合而成的具有特定功能的整体

系统的基本作用:对输入信号进行加工处理,将其转化为所需要的输出信号

2. 系统模型

系统模型:对实际系统的理想化

集中参数系统:忽略电磁辐射,即电场和磁场可分别用C,L表示,且能量传输不考虑时间。电路尺寸<<波长

分布参数系统:电磁辐射,电磁能在传输线连续分布,且能量传输需要时间。电路尺寸与波长相近,比如微波传输系统

3.1 系统分类

3.1.1 线性与非线性系统

线性系统:满足线性性质的系统(齐次性,可加性);输入的线性组合满足输出的线性组合
T [ a f 1 ( ∗ ) + b f 2 ( ∗ ) ] = a T [ f 1 ( ∗ ) ] + b T [ f 2 ( ∗ ) ] T[af_1(*)+bf_2(*)]=aT[f_1(*)]+bT[f_2(*)] T[af1()+bf2()]=aT[f1()]+bT[f2()]

动态线性系统:不仅与激励(输入)有关,还与过去状态有关,也叫记忆系统

  • 完全响应: y ( ∗ ) = T [ { f ( ∗ ) } , { x ( 0 ) } ] y(*)=T[\{f(*)\},\{x(0)\}] y()=T[{ f()},{ x(0)}]
  • 零状态响应: y z s ( ∗ ) = T [ { f ( ∗ ) } , { 0 } ] y_{zs}(*)=T[\{f(*)\},\{0\}] yzs()=T[{ f()},{ 0}]
  • 零输入响应: y z i ( ∗ ) = T [ { 0 } , { x ( 0 ) } ] y_{zi}(*)=T[\{0\},\{x(0)\}] yzi()=T[{ 0},{ x(0)}]

当动态系统满足下列3个条件时,该系统是线性系统

  1. 可分解性:全响应等于零状态加零输入 y ( ∗ ) = y z s ( ∗ ) + y z i ( ∗ ) y(*)=y_{zs}(*)+y_{zi}(*) y()=yzs()+yzi()
  2. 零状态线性:不考虑状态的时候,输入的组合等于响应的组合
  3. 零输入线性:没有输入的时候,状态的组合等于状态分别响应的组合

非线性系统

3.1.2 时变与时不变系统

时不变系统

字面意思,系统输入延迟多少时间,其零状态响应也相应延迟多少时间
f ( t − t d ) ⟶ y z s ( t − t d ) T [ { 0 } , f ( t − t d ) ] = y z s ( t − t d ) f(t-t_d)\longrightarrow y_{zs}(t-t_d)\\ T[\{0\},f(t-t_d)]=y_{zs}(t-t_d) f(ttd)yzs(ttd)T[{ 0},f(ttd)]=yzs(ttd)
时变系统:不满足上面就是时变咯。直观判断方法:若 f ( ∗ ) f(*) f()前出现变系数,或有反转,伸缩变换,那就是时变系统

线性时不变(LTI)系统
  1. 微分性质

    f ( t ) ⟶ y z s ( t ) f(t)\longrightarrow y_{zs}(t) f(t)yzs(t),则 f ′ ( t ) ⟶ y z s ′ ( t ) f'(t)\longrightarrow y'_{zs}(t) f(t)yzs(t)

  2. 积分性质

    f ( t ) ⟶ y z s ( t ) f(t)\longrightarrow y_{zs}(t) f(t)yzs(t),则 ∫ − ∞ t f ( x ) d x ⟶ ∫ − ∞ t y z s ( x ) d x \int_{-\infty}^t f(x)dx\longrightarrow \int_{-\infty}^t y_{zs}(x)dx tf(x)dxtyzs(x)dx,输入的积分产生的是状态的积分

分析方法:

  • 输入输出法(外部法)

    • 时域分析
    • 变换域法
      • 连续系统——频域法和复频域法
      • 离散系统——频域法和Z域法
  • 状态变量法(内部法)

3.1.3 因果与非因果系统

因果系统:指的是零状态响应不会出现在激励之前的系统,没有输入之前是不会有结果的

比如: y z s ( t ) = 2 f ( t + 1 ) y_{zs}(t)=2f(t+1) yzs(t)=2f(t+1),令t=1时,有 y z s ( 1 ) = 2 f ( 2 ) y_{zs}(1)=2f(2) yzs(1)=2f(2)这是非因果系统,2秒时刻加的输入它在1秒时就出结果了,这波提前预测了属于是。

3.1.4 连续系统的初始值

初始值是n阶系统在t=0时刻接入的激励,其响应在 t = 0 + t=0_+ t=0+时刻的值,即 y ( j ) ( 0 + )    ( j = 0 , 1 , 2 , . . . , n − 1 ) y^{(j)}(0_+) \ \ (j=0,1,2,...,n-1) y(j)(0+)  (j=0,1,2,...,n1)

初始状态是指系统在激励尚未接入的t=0时刻的响应值 y ( j ) ( 0 − ) y^{(j)}(0_-) y(j)(0),该值反映了系统的历史情况,而与激励无关。

那么为了求解微分方程,需要从已知的初始状态 y ( j ) ( 0 − ) y^{(j)}(0_-) y(j)(0)求得 y ( j ) ( 0 + ) y^{(j)}(0_+) y(j)(0+)

  • 栗子-01

    描述某系统的微分方程为 y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 f ′ ( t ) + 6 f ( t ) y''(t)+3y'(t)+2y(t)=2f'(t)+6f(t) y(t)+3y(t)+2y(t)=2f(t)+6f(t)。已知 y ( 0 − ) = 2 , y ′ ( 0 − ) = 0 , f ( t ) = ϵ ( t ) y(0_-)=2,y'(0_-)=0,f(t)=\epsilon(t) y(0)=2,y(0)=0,f(t)=ϵ(t),求得 y ′ ( 0 + ) , y ( 0 + ) y'(0_+),y(0_+) y(0+),y(0+)

    解:将 f ( t ) = ϵ ( t ) f(t)=\epsilon(t) f(t)=ϵ(t)代入微分方程得 y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 δ ( t ) + 6 ϵ ( t ) y''(t)+3y'(t)+2y(t)=2\delta(t)+6\epsilon(t) y(t)+3y(t)+2y(t)=2δ(t)+6ϵ(t)

    ——因为上面这个方程式右侧有个 δ \delta δ,意味着在0时刻加了个无穷大量,那么在 0 − ⟶ 0 + 0_-\longrightarrow 0_+ 00+,初始值和状态是会发生变化的。那么这个 δ \delta δ只能是由左边最高阶 y ′ ′ ( t ) y''(t) y(t)产生的。所以在 0 − ⟶ 0 + 0_-\longrightarrow 0_+ 00+时刻 y ′ ( t ) y'(t) y(t)产生突变,才能求导得到$\delta $

    ​ 故: y ′ ( 0 + ) ≠ y ′ ( 0 − ) 且 y ( 0 − ) = y ( 0 + ) = 2 y'(0_+)\neq y'(0_-) 且 y(0_-)=y(0_+)=2 y(0+)=y(0)y(0)=y(0+)=2

    ​ 对 y ′ ′ ( t ) + 3 y ′ ( t ) + 2 y ( t ) = 2 δ ( t ) + 6 ϵ ( t ) y''(t)+3y'(t)+2y(t)=2\delta(t)+6\epsilon(t)

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值