NVIDIA显卡架构

架构排序(时间顺序)

Tesla

出现时间:2008年

产品:市面已经没有相关显卡

备注:NVIDIA第一个实现了统一着色器模型的芯片架构,针对HPC和AI场景,应用于早期的CUDA系列显卡芯片中。

Fermi

出现时间:2010年

产品:GeForce 400,500,600,GT-630

备注:包含了30亿晶体管,采用了40nm的纳米制程,代表产品有GeForce 400、500、600系列,如GT-630。

Kepler

出现时间:2012年

产品:Tesla K40/K80,GeForce 700,GT-730

备注:采用28nm制程,是首个支持超级计算和双精度计算的GPU架构,代表产品有Tesla K40/K80,GeForce 700系列,如GT-730

Maxwell

出现时间:2014年

产品:Tesla/Quadro M 系列,GeForce 900,GTX-970

备注:在功耗效率、计算密度上获得重大提升,代表产品有Tesla/Quadro M系列,GeForce 900系列,如GTX-970。

Pascal

出现时间:2016年

产品:Tesla p100,GTX 1080,GTX 1070,GTX 1060

备注:NVIDIA在2016年推出的GPU架构,用于其GeForce、Quadro、Tesla系列的显卡,代表产品有Tesla P100,GTX 1080,GTX 1070,GTX 1060

Volta

出现时间:2017年

产品:Tesla V100,GTX 1180

备注:标志着AI成为GPU发展的新方向,首代Tensor Core架构,代表产品有Tesla V100。

Turing

出现时间:2018年

产品:T4,GTX 1660 Ti,RTX 2060

备注:自2006年发明CUDA GPU以来的重大飞跃,引入了RT Core和Tensor Core,代表产品有T4,GTX 1660 Ti,RTX 2060。

Ampere

出现时间:2020年

产品:A100

备注:自2006年发明CUDA GPU以来的重大飞跃,引入了RT Core和Tensor Core,代表产品有T4,GTX 1660 Ti,RTX 2060。

Ada Lovelace

一、游戏显卡

GeForce RTX 4090

定位:旗舰级游戏显卡

适用场景:4K游戏和高性能应用

GeForce RTX 4080

定位:高端游戏显卡

适用场景:高端游戏用户

GeForce RTX 4070 Ti

定位:中高端游戏显卡

适用场景:1440p和4K游戏,具有优越的性价比

GeForce RTX 4070

定位:中端游戏显卡

适用场景:高效能,满足大多数现代游戏需求

GeForce RTX 4060 Ti

定位:中端入门级游戏显卡

适用场景:适合1080p和1440p游戏,性价比高

GeForce RTX 4060

定位:入门级游戏显卡

适用场景:入门级用户,性能稳定

二、专业显卡

RTX 6000 Ada

显存容量:48GB GDDR6X

CUDA核心数量:18176个

定位:旗舰级专业显卡

适用场景:广泛应用于深度学习和科学计算

RTX 5880 Ada

显存容量:48GB(推测,与RTX 6000 Ada相近)

定位:高端专业显卡

RTX 5000 Ada

显存容量:32GB GDDR6

定位:中高端专业显卡

适用场景:高性能计算任务

RTX 4500 Ada

显存容量:24GB GDDR6

定位:中端专业显卡

RTX 4000 Ada

显存容量:20GB GDDR6

定位:中端入门级专业显卡

RTX 4000 SFF Ada

显存容量:20GB(推测,与RTX 4000 Ada相近)

定位:小型机箱适用的专业显卡

NVIDIA A6000 Ada

定位:专为专业设计和可视化而生的顶尖显卡

适用场景:深度学习和科学计算

显卡系列

Tegra(平板):手机和嵌入式设备(jetson)用的

GeForce(精视)显示器用的,比如电脑的显卡

Quadro(方形住宅区): 专业绘图

Tesla(特斯拉(磁感应强度单位))大规模计算,比如深度学习训练

描述GPU有两个指标,一个是CUDA的核心数量,第二个是内存大小,在评估时主要考虑峰值计算性能和内存带宽,一般核心数量越多,TFlops越大,效果越好,在选购显卡的时候要首先根据用途选择对应的系列,然后看相应的计算性能和内存。

算力

算力包含一个大版本x和一个小版本y,一块显卡的算力的表示就是x.y,x其实就是代表着显卡的架构,y代表这基于这个架构一些增量优化,比如7.5就是基于volta的架构优化的,最后命名为turing架构。

NVIDIA的GPU产品有GeForce、Tesla、Quadro、Tegra、Tesla、Nvidia Grid系列,虽然从硬件角度来看它们都采用同样的架构设计,也都支持用作通用计算(GPGPU),但因为它们分别面向的目标市场以及产品定位的不同,这6个系列的GPU在软硬件的设计和支持上都存在许多差异。

产品定位

GeForce(精视™):面向消费者的图形处理产品,主要用于台式电脑和笔记本电脑

Quadro:计算机辅助设计和数字内容创建工作站图形处理产品,一般应用于专业的图形工作站

Quadro NVS:属于Quadro产品线中的一个系列,用于多显示商用显卡,可用多个虚拟桌面显示,协助企业安装部署的多种预设设定。

Tegra:用于移动设备的芯片系列,常应用于手机及平板电脑等移动端使用; 

Tesla(特斯拉):主要用于服务器高性能电脑运算,Tesla一般是不设计外接接口,主要是辅助CPU去计算所需应用,常应用于研究物理、生化和深度学习等领域;

Nvidia Grid:Nvidia用于图形虚拟化的一套硬件和服务,可以根据用户需求分配使用量,这意味着,多名用户可以共享单一 GPU。

生产厂商

GeForce显卡则主要由第三方厂商生产,而且还区分为采用原厂设计的公版型号厂商自行设计的非公版型号,其产品的稳定性可能也因不同厂商的设计和工艺水平存在差异。

Quadro显卡现在主要有3家公司负责生产,欧美地区由美国的必恩威(PNY)负责,而台湾的丽台(Leadtek)负责欧亚太地区的销售。艾尔莎日本(Elsa Japan)则仅仅在日本有销售的权利。这三家公司互不进入对方所在的市场,所以我们见到的全新Quadro显卡都是属于丽台生产的;

Tegra系列产品由NVIDIA与微软合作设计和生产;

Tesla与Nvidia Grid系列产品全部由NVIDIA原厂设计和生产,产品品质和服务都更有保障,毕竟应用于高科技领域,Nvidia肯定是将技术核心掌握在手中。

转自:1.了解NVIDIA显卡架构_s.feng的博客-CSDN博客 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值