1.了解NVIDIA显卡架构

架构排序(时间顺序):

  • Tesla: 市面已经没有相关显卡
  • Fermi:GeForce 400, 500, 600, GT-630
  • Kepler:Tesla K40/K80, GeForce 700, GT-730
  • Maxwell: Tesla/Quadro M series GeForce 900, GTX-970
  • Pascal: Tesla p100,GTX 1080, GTX 1070, GTX 1060
  • Votal: Tesla V100, GTX 1180
  • Turing: T4,GTX 1660 Ti, RTX 2060
  • Ampere: A100
  • Hopper: H100

显卡系列:

  • Tegra: 手机和嵌入式设备(jetson)用的
  • GeForce: 显示器用的,比如电脑的显卡
  • Quadro: 专业绘图
  • Tesla: 大规模计算,比如深度学习训练
    在这里插入图片描述
    描述GPU有两个指标,一个是CUDA的核心数量,第二个是内存大小,在评估时主要考虑峰值计算性能和内存带宽,一般核心数量越多,TFlops越大,效果越好,在选购显卡的时候要首先根据用途选择对应的系列,然后看相应的计算性能和内存。

算力:
算力包含一个大版本x和一个小版本y, 一块显卡的算力的表示就是x.y, x其实就是代表着显卡的架构, y代表这基于这个架构一些增量优化,比如7.5就是基于volta的架构优化的,最后命名为turing架构。

x.y架构
1.0Tesla
2.0Fermi
3.0Kepler
4.0
5.0Maxwell
6.0Pascal
7.0Volta
7.5Turing
8.0Ampere

在这里插入图片描述

官网查询:https://developer.nvidia.cn/cuda-gpus#compute

### 安装 NVIDIA 显卡驱动和 CUDA 支持 #### 准备工作 在 Ubuntu 22.04 中安装 NVIDIA 驱动程序和 CUDA 工具包之前,建议先更新系统的软件包列表并升级现有软件包。 ```bash sudo apt update && sudo apt upgrade -y ``` #### 添加 NVIDIA 软件源 为了获取最新的 NVIDIA 驱动程序和支持版本的 CUDA,可以添加官方 PPA 或直接通过 `apt` 进行安装。以下是推荐的方法: ```bash sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update ``` #### 查找适合的 NVIDIA 驱动版本 可以通过以下命令查找当前硬件最适合的 NVIDIA 驱动版本号[^1]。 ```bash ubuntu-drivers devices ``` 此命令会返回一系列可用的驱动选项及其对应的版本号。选择最新稳定版作为目标安装版本。 #### 安装 NVIDIA 驱动 假设查询结果显示推荐版本为 `nvidia-driver-525`,则执行如下命令完成驱动安装[^2]。 ```bash sudo apt install nvidia-driver-525 ``` 重启计算机以应用更改。 ```bash sudo reboot ``` 验证 GPU 是否正常运行以及驱动是否成功加载。 ```bash nvidia-smi ``` 如果显示有关设备的信息,则说明驱动已正确安装。 #### 下载与安装 CUDA Toolkit 访问 [NVIDIA CUDA 官方下载页面](https://developer.nvidia.com/cuda-downloads),根据操作系统架构筛选合适的工具包链接。对于 Ubuntu 22.04 推荐采用 `.run` 文件形式或者基础库加头文件的方式进行部署。 ##### 方法一:使用 .deb (local) 包管理器方式 按照提示下载对应平台的 deb(local) 版本压缩包后解压至本地目录,并导入到 APT 缓存中去处理依赖关系问题[^3]。 ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` ##### 方法二:手动脚本安装法 (.run file) 这种方法更加灵活可控,但可能需要额外解决一些权限冲突等问题。 ```bash chmod +x cuda_<version>_linux.run sudo ./cuda_<version>_linux.run --override ``` 注意,在实际操作前阅读相关文档确认具体参数设置情况。 #### 设置环境变量 编辑用户的 shell profile 文件来永久生效 PATH 和 LD_LIBRARY_PATH 的调整[^4]。 ```bash echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` 最后再次检查配置状态。 ```bash nvcc --version ``` 以上步骤完成后应该能够顺利编译运行基于 CUDA 平台的应用程序了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值