码头智能配载

智能配载的定义

智能配载指的是由人工智能算法模拟集装箱码头配载员的思路与方法,综合考虑设备情况、任务分布、堆存状态等因素,根据预配船图、船舶适航要求以及码头作业要求,自动地把预定装载出口的集装箱配载到目标船箱位上的决策过程。

智能配载的意义

(1)大幅提高配载效率

自动配载的效率约是人工配载效率的8-10倍。以装船2000自然箱为例,自动配载的速度平均为15分钟,人工配载则需要大约2-3小时。

(2)降低劳动强度

针对超大型船舶,可大幅降低员工劳动强度,逐步使配载员从反复重复的操作者角色转化成为规则的制定者。

(3)固化员工经验

极富经验的配载员退休或离职是码头公司的一种损失,而通过计算机自动配载系统不断地吸纳与固化员工的配载作业经验,即可稳步、有效提高配载质量。

(4)提高夜间配载质量

系统配载的另一特点即是配载质量稳定,计算机超强的计算能力能够有效避免人工因夜间疲劳导致的配载质量下降等不良情况。

(5)降低翻箱率,提高一配率

翻箱率与配载时的箱子放关情况密切相关,由于某些大型海港不截关,配载时间越晚,出口箱的放关率也就越高,不但能提高一配率,还能有效控制放关对翻箱率的影响。

(6)动画演示发箱过程,有效衔接配载与船控思路

系统支持配载的发箱过程动画演示,可单步调试查看各取箱点的取箱过程以及船上贝位内的装载过程,从而有效衔接配载员与船控调度员的思路。

智能配载发展现状

近年来,我国港口码头企业纷纷推进信息化、智能化建设,引进互联网思维、物联网技术、大数据技术、云计算技术、GIS、生产管理系统等先进技术手段,推进码头的自主装卸能力和“自我思考”能力。从发展至今,也相应取得了一定的成绩。在“智慧港口”背景下,港口装备日趋大型化、数字化、集成化,集装箱码头的信息化水平、自动化水平、智能化水平不断提高,因而对集装箱码头的运营管理模式提出了智能性、预测性、可控性的精益化管理要求。

集装箱码头的运营管理主要包括堆场管理、设施设备管理、船舶装卸作业管理、船期的管理等。其中船舶装卸作业管理直接影响码头生产运营效率,而集装箱船舶配载作业是船舶装卸作业的重要环节之一,是将出口箱以合理的顺序对应装载到船舶合适的船箱位上。因此,实现集装箱船舶配载作业的精益化管理成为码头降低成本和能耗、提高效率的重要途径,而实现集装箱船舶配载作业的精益化管理的有效技术手段是利用管理信息系统中的知识库实现集装箱船舶的智能配载。

集装箱船舶配载的智能化需求不仅仅是集装箱码头精益化管理的重要组成部分,还是集装箱码头的行业发展的必然要求。

纵观集装箱船舶配载历史,其发展主要可以分为人工配载,计算机辅助配载,智能配载三个阶段。2000年以前的集装箱码头配载模式主要是人工卡纸配载,2000年后出现了计算机辅助配载系统,近年来逐渐向智能配载方向发展。

(1)人工配载阶段

早期国际航运业的运输船舶多为小型船舶,国内集装箱运输业处于起步阶段,码头少、规模小,集装箱码头运营模式主要是人工记录集装箱堆存计划、船舶配载计划。其中,“T卡管理”是典型的人工作业方案,该方案通常在墙壁上挂平面记录卡板,表示不同的堆场位置,而用每张记录集装箱尺寸、箱型、重量等重要参数的“T卡”来代表一个集装箱

(2)计算机辅助配载阶段

随着国际贸易的发展,集装箱运输占比迅速提升,集装箱码头单船载运箱量不断增加,原有的人工作业模式无法满足作业需求,各码头陆续开发管理信息系统以辅助作业,提升码头计划效率和柔性,之后逐渐发展为现在的码头操作管理系统(Terminal Operation System,TOS)

(3)智能配载阶段

近年来,世界兴建自动化码头,船舶大型化、结构复杂化,促使码头作业精细化、智能化。此外,传统码头为提高港口竞争力,甚至提出“零截关”以提升服务质量,吸引顾客;码头中型以上船舶数量增加、进出口总箱量增加,要求码头提升作业效率、低人工成本,激发了对智能配载的需求。

我国目前大部分港口船舶配载计划主要还是依靠人工手动加计算机辅助完成,随着“智慧港口”概念的提出以及港口企业对于其自身的要求,依靠配载员个人经验进行人工配载的管理模式称为了当前集装箱船舶作业的一大瓶颈。虽然在实际过程中通过不断地实践掌握了很多相关经验,但人工配载容易受到其个人的经验影响很大,所以如何将配载经验与计算机进行结合,运用计算机快速、有效地制定出合理的配载方案有重要研究意义。

集装箱船舶配载作业是码头装船作业的重要环节,它衔接着前方岸桥和后方场桥的作业过程,直接影响码头生产运营效率。因此,实现运用计算机进行合理、高效的配载作业称为当前船舶大型化趋势下必不可少的重要途径,具有现实意义。

常见的集装箱码头船舶智能配载

近年来,世界兴建自动化码头,船舶大型化、结构复杂化,促使码头作业精细化、智能化。此外,传统码头为提高港口竞争力,甚至提出“零截关”以提升服务质量,吸引顾客;码头中型以上船舶数量增加、进出口总箱量增加,要求码头提升作业效率、降低人工成本,激发了对智能配载的需求。目前市面上常见的集装箱码头船舶配载技术主要分为以下4类:

(1)基于人工规则的集装箱码头船舶智能配载技术

该类技术主要是将基本的配载规则提炼成规则库,在配载过程中调用人工提炼的规则库进行配载。其优势是在规则库范围内的配载工况能够较好并且快速求解。但是随着近年来船舶大型化的不断演进,其配载规则不仅已呈现几何增长,越来越多的配载技巧也难以用简单的人工规则进行刻画。因此,该类技术很难有进一步提升的空间。

(2)基于数学模型的集装箱码头船舶智能配载技术

该类技术主要是将船舶配载问题抽象成数学模型并利用一些智能算法进行求解。该类技术与人工规则技术相比能够求解更复杂的配载问题。但与此同时,模型的复杂度也严重影响了配载的求解效率。对于大型及超大型船舶该类技术很难在合理的时间内求得一个较为满意的解。

(3)混合集装箱码头船舶智能配载技术

该混合型的集装箱码头船舶配载技术主要是结合了基于规则的技术与基于模型技术的优势所形成的一种新技术。该技术通常会在简单的工况下使用基于规则的方法进行配载,在复杂情况下利用智能算法进行求解,从而在一定程度上提高了配载的求解效率,但在配载箱量达到一定程度时,其求解效率同样不能令人满意。

(4)基于学习导向的船舶智能配载技术

该技术有点类似于混合配载技术,但其核心内容却完全不同。从规则提炼方面,该技术采用了深度神经网络的学习方法进行学习,从而将普通的人工规则提升至配载特征的层次,克服了大多数抽象的配载策略无法用构造式的人工规则来描述的这一问题,同时,在配载求解过程中也采用了智能算法,但是在算法的上层还构造了一层工作流引擎用于快速调用配载特征库进行配载,从而大幅提升了配载求解的速度。最后,该技术该采用预演的方式实现了配载评估体系,该评估体系也是其他技术所不具备的。

智能配载的技术架构范例:深度学习+工作流引擎+预演评估

随着智慧型港口概念的提出,以配载员个人经验为主的人工配载模式成为了现有集装箱码头配载作业的一大瓶颈。而智能配载问题主要是应用智能优化方法来解决该问题,主要包含优化理论、系统分析与决策科学、人工智能等研究方向。下图是一种基于学习导向的智能配载系统架构经典范例。该架构将配载的决策过程分解成学习、决策以及评估三大阶段,在各个阶段分别采用了深度学习、工作流引擎以及生产预演技术解决了配载决策过程中知识存储难、求解速度慢、效果评估差这三大重点问题以最终实现智能配载。

1、该架构实现了配载策略和配载工况两大深度学习网络,突破了传统学习模式难以自动提炼数据特征这一技术瓶颈,从而解决了配载知识与复杂工况的准确提炼与存储这一难题。

集装箱码头配载决策过程中所面临的工况是千变万化的,有经验的配载员能够根据预配船图和场地分布准确的判断出当前的配载工况,但这些工况却很难用语言去准确描述。同样在面对不同工况下配载员所采用的配载策略也无法用简单的规则进行描述。而配载工况与配载策略是整个配载决策过程中最重要的决策依据。因此,为了解决这两大配载依据的提炼、表述与存储的问题,分别训练了两大深度神经网络。其中,配载工况网络将不同船舶每个贝位的历史配载数据转换成了一个大小恒定的稀疏矩阵,并通过卷积神经网络提取出了百余个特征映射矩阵,最后通过池化等一系列的处理再连接一个全联接的深度网络构建成配载工况网络。其配载工况网络如下图所示:

配载策略网络的设计是为了将总结出的基本配载原则作为基本输入并将其抽象化从而形成更加复杂的配载策略。因此配载策略网络以历史配载步骤和配载依据作为输入采用级联自编码机的形式建立一个全联接的受限玻尔兹曼机从而构建出了配载策略网络。其配载策略网络如下图所示:

通过这两大网络训练出的结果为实现智能配载提供了核心决策依据。同时,当现有知识无法对当前船舶有效决策时,通过人工调整配载结果,并使用调整后的结果对网络进行增强训练,可进一步完善两大配载网络,从而实现智能配载技术的推进。

2、该架构运用了一种基于工作流引擎的规则调度方法,为复杂工况下的智能配载决策提供了一种合理的知识网络调度方案,攻克了大规模决策过程中解空间指数级增长从而无法实现高效决策这一技术难题,解决了智能配载求解过程中不同工况的剪枝策略组织的关键问题。

该引擎通过对当前决策工况进行模式匹配,识别并调度不同规则对当前决策空间进行剪枝,针对某些非简单工况,该引擎可以从知识网络中选择并重构适合当前工况的知识堆栈,优化求解需搜索的状态节点,大幅缩减决策空间。

针对配载问题的传统求解方法主要是智能算法(如遗传算法、禁忌搜索和混合算法)和启发式算法。由于配载问题搜索空间非常大,约束非常复杂,而且不同工况下约束不尽相同。因此传统求解方法有以下局限:

(1).约束规则过于复杂,需要针对不同工况设计不同的算法或者启发方法,复用性低;

(2).求解空间过大,收敛效率低,求解时间过长,且很难求得满意解。

因此需要一种高效的方法组织决策规则,并通过剪枝缩减搜索空间,提升求解效率和求解效果。

该规则调度方法基于工作流引擎进行设计,有效处理作业流程与求解流程之间的关联关系。求解过程中,根据当前求解节点的特征,通过工作流引擎的历史数据分析和流程分析,匹配相应工况,获取当前节点的约束集,生成当前子搜索节点,并识别所需的求解策略。如果历史工况库中无工况匹配,说明当前节点是新工况,此时工作流引擎根据新工况的特征和业务流程特性分析,获取相应的求解策略。求解策略提取完成后,再根据策略优先级重构知识堆栈,组成针对当前节点的策略集,对各子节点进行搜索。求解完成后,针对构建的求解树,根据最终选择的最优路径,反向分析策略和剪枝的效果。通过每一步求解过程子节点的实际估值与实际值的差,进行残差学习,修正策略网络的相应参数,并通过工作流分析对修正的知识进行解释。然后对本次求解过程中新增的工况进行工况特征和策略特征更新,以便下次遇到相同工况时可以直接匹配特征求解。

3、该架构运用集装箱码头装卸作业预演系统,在智能配载决策后对整船装卸过程进行动态模拟,估算目标决策方案下码头作业效率及其他关键绩效指标,从而突破传统配载计划在实际装卸作业之前无法进行合理评估这一技术瓶颈。

配载计划仅能确定各集装箱在船舱和堆场的堆存位置,以及岸桥和场桥的作业顺序,无法得知后续装卸作业的实际效率和成本。同时由于配载计划评价因素的复杂性,难以直接使 用静态的函数方式表达实际的总评价指标。因此需要开发动态的预演评价方法,对配载的实际效果进行全面分析。集装箱码头装卸作业预演通过模拟码头的实际装卸作业过程,对配载计划的实际作业效率和成本进行精细评价。

预演评估系统以配载计划作为输入,包括船舶的停泊位置、投入的岸桥数量、各岸桥的作业任务顺序,以及 各任务的岸桥作业位置和场桥作业位置。装船任务可能以任务组的形式出现,同一组内的装船任务集中堆存在同一箱区的相邻倍内,且由同一场桥和同一岸桥依次装船。卸船任务同样可能形成卸船任务组,其定义与装船任务组类似。

对于给定的配载计划,预演模块能够得到两类输出。第一类输出用于支持配载计划决策,包括船舶装 卸时间、岸桥作业效率和总装卸成本。第二类输出则用于提出配载计划的改进方向,包括各岸桥和场桥等待集卡的时间,这些时间按照不同的任务组进行分类统计。第一类输出是评价配载计划的主要指标。一般认为,船舶装卸时间较短、岸桥作业效率较平均、且总装卸成本较低的配载计划总是较优。第二类输出则用于指示配载计划中的不合理部分。若某任务组岸桥等待集卡的时间大于零,则意味着该任务组的岸桥作业效率仍有提升空间。若该任务组中场桥等待集卡的时间较长,则可以对配载计划中与该任务组有关的部分进行适当调整。

智能配载的应用

(1)宁波大榭招商国际码头

宁波港大榭集装箱码头作为国内首个使用智能配载技术的集装箱码头。截止目前(2018年12月),应用智能配载船舶(装载量大于 300UNIT 的船舶)千余艘次,其中,大型超大型船舶应用率约占90%。应用智能配载技术的船舶平均单机效率比往年同期显著提升,平均作业路数比往年同期有所减少,预计每年可节约成本千余万。智能配载技术大幅提高了配载计划的编制效率,1000UNIT 积载时间可以在10 分钟内完成,公司吞吐量达 300WTEU 时,计划岗位人员编制仍保持不变,特别是针对短截关期状况下的大型船舶,该技术可以平均将装船作业开工时间提前 3-4 个小时,节能减排的同时显著降低码头生产运营成本。

(2)上海港

上海港集团实行“不截关”服务,截关时间大大延后,原有人工配载由于决策时间较长,需在船舶靠泊前数小时根据出口箱进场放关情况进行一次配载,靠泊前根据出口箱放关情况进行后续的两到三次配载。应用智能配载技术后,由于配载决策所需时间显著缩短,可先根据放关情况提前数小时进行首次决策,靠泊前针对剩余出口箱进行二次决策,且首次决策时间大幅延后,减少了首次决策后放关出口箱数量,提升了决策效率和决策水平。

转自:智能配载 | 智能港口物流科研创新分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值