在大多数情况下,输出成本(completion cost,生成结果的成本)通常要大于输入成本(prompt cost,处理提问的成本) 。这是因为输出成本涉及到大量的计算资源消耗,特别是在处理大规模文档或复杂任务时。(有可能问题描述的比较详细,占用的token较多,但输出结果比较简单,占用的token较少。也有可能问题描述的比较简单,占用的token较少,但输出结果比较复杂,占用的token较多,如写一篇10万字的关于大模型的论文)以下是对输入成本和输出成本的详细分析:
输入成本:
1)输入成本主要来源于设计和优化提示(Prompt),使其能够有效引导模型生成准确和有用的输出。这包括用户或开发者的时间投入、技术工具的使用成本以及可能的技术支持费用。虽然这些成本存在,但与输出成本相比通常较低。
2)设计有效的Prompt需要深入理解模型的行为和语言表达方式,这可能需要大量的实验和调整。
3)设计和测试Prompt的时间成本往往是不可忽视的,特别是在复杂应用场景中。
4)有效的Prompt工程可能需要诸如特定框架的专业技术支持。
5)用户(尤其是非技术用户)通常需要花时间学习和理解如何有效地与大模型交互。
输出成本