大模型output token为什么比input token贵?

导入

近年来,许多商业大模型的价格不断下降,但你是否注意到一个关键细节:output token 的价格通常比 input token 高出几倍。这背后究竟是什么原因呢?在这篇博客中,我们将深入探讨大模型生成 token 的机制,并揭示为什么 output token 的成本更高。

请添加图片描述

大模型的输出机制

在 KV cache(键值缓存)的支持下,大模型生成 token 分为两个阶段:

预填充(prefill)

在预填充阶段,模型会并行处理输入的 prompt(即 input token),生成 KV cache。这一步骤包括一次完整的前向传播(forward),并输出第一个 token。这个过程的时间主要由 input token 决定,因为它们需要进行一次全面的计算来初始化整个生成过程。

解码(decoding)

解码阶段是逐个生成下一个 token 的过程。在这一步中,output token 的数量决定了需要进行多少次前向传播。虽然每次前向传播由于 KV cache 的存在而更快,但这仍然需要模型多次计算,逐步生成每一个后续的 token。

影响因素

大模型的生成过程受多种因素影响,这些因素不仅决定了生成 token 的效率,还影响了成本:

Input Token

  1. 预填充时间:input token 决定了预填充阶段的时间,即第一个 token 生成的时间,这个过程只计算一次。
  2. 显存占用下限:input token 决定了 KV cache 占用显存的最低限度,因为它们需要为后续的 token 生成提供基础。
  3. 生成速度基线:input token 还决定了从第二个 token 开始生成的速度基线,影响后续的计算效率。

Output Token

  1. 解码时间长度:output token 决定了解码阶段的时间长度。由于 KV cache 的存在,每次计算比第一个 token 快得多,但仍需多次前向传播。
  2. 显存占用上限:output token 决定了 KV cache 占用显存的最高限度,因为每生成一个新的 token,缓存中存储的信息量也在增加。

哪个开销更大?

一次完整的前向传播(input token数量)与多次利用 KV cache 的前向传播(output token数量),哪个开销更大呢?

请添加图片描述

计算与通信瓶颈

尽管 KV cache 能有效减少每次计算的量,但由于通信带宽的更新速度未能跟上计算能力的提升,显卡对 I/O 的敏感度更高。每个 output token 的生成仍需多次前向传播,加之显卡 I/O 速度的限制,使得每个 output token 的开销更大。这也解释了为什么 output token 的价格比 input token 高。

结语

小知识+1,可以和朋友们吹牛了!

参考

### 如何降低大模型 Token 成本 #### 使用更高效的推理框架 为了减少每次调用大型语言模型的成本,可以考虑采用更加高效且优化过的推理框架。这些框架通常会针对特定硬件平台做性能上的优化,从而提高吞吐量并减少延迟时间。例如TensorRT或ONNX Runtime这样的工具能够加速神经网络计算过程,在保持精度的同时显著提升效率[^1]。 #### 应用剪枝技术 通过移除那些对于预测结果影响较小甚至几乎没有贡献的部分参数(即权重),可以在明显损失准确性的前提下大幅减小模型体积以及所需的tokens数量。这种方法仅有助于节省存储空间,也能加快前向传播速度进而间接降低了token费用[^2]。 #### 部署轻量化版本 如果应用场景允许的话,则可以选择部署经过蒸馏训练得到的小型化学生徒模型而非原始的大规模预训练模型。这类精简版虽然可能具备原生LLMs那么强大的泛化能力,但在某些限定领域内依然能提供令人满意的输出质量,并且其运行代价远低于前者[^3]。 #### 实施按需加载策略 当面对非常庞大的Transformer结构时,一次性将整个序列送入GPU显存显然是可取的做法;相反地应该采取分批次读取的方式——只把当前需要处理的数据片段传送到设备上参与运算即可。这仅可以有效缓解内存压力,而且还能避免因单次请求过长而产生的额外开销。 ```python def process_in_chunks(input_ids, chunk_size=512): outputs = [] for i in range(0, len(input_ids), chunk_size): output_chunk = model.generate( input_ids[i : i + chunk_size], max_length=chunk_size, do_sample=False ) outputs.append(output_chunk) return torch.cat(outputs) # 假设input_ids是一个长度大于512的张量 result = process_in_chunks(input_ids) ``` #### 利用缓存机制 对于重复出现的内容可以直接利用之前已经生成的结果而是每次都重新计算一遍,这样就可以大大缩短实际消耗的时间资源。特别是在对话系统中经常会有相似问题被多次询问的情况存在,此时合理运用记忆功能就显得尤为重要了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值