用 Dify 打造合同评审流水线

身为在法务、商务等领域工作的职场人,你是否在面对堆积如山的合同审查任务时,感到压力山大?传统的人工合同审查方式,不仅耗费大量时间和精力,还容易因人为疏忽而遗漏重要风险点。如今,AI技术的发展为合同审查带来了全新的解决方案。本文将为你介绍如何借助Dify平台,打造一套高效的合同评审工作流,实现合同秒级解析、风险自动标注,大幅提升工作效率。

一、打工人的深夜噩梦:合同评审的三大痛点

在日常工作中,合同评审常常让打工人苦不堪言。想象一下,某天深夜在加班核对合同条款,面对 100 页的合同文件,一页页翻找,眼睛都看花了。突然发现已经修改N版的内容里,有一条款和公司规定冲突,瞬间头皮发麻。这种场景并非个例。传统合同评审存在诸多痛点:

1、人工逐条核对费时费力:一份合同少则十几页,多则上百页,人工核对每一条条款,需要耗费大量时间和精力,效率极其低下。

2、专业条款容易遗漏风险:合同中涉及的专业条款繁多,不同行业、不同类型的合同,条款内容差异较大。由于知识储备和经验的限制,人工审查时很容易遗漏一些潜在的风险点。

3、不同合同格式难以统一:来自不同合作方的合同,格式千差万别,这给审查工作带来了额外的难度,需要花费更多时间去整理和分析。

二、AI 逆袭时刻:合同评审流水线效果展示

如今,AI 技术的应用为合同评审带来了革命性的变化。借助 Dify 平台搭建的合同评审工作流,让评审工作变得如同工厂流水线一样简单高效:

1、效率提升N倍: 以往需要花费数小时甚至数天才能完成的 100 页合同审查工作,现在仅需 10 分钟就能完成初筛,极大地缩短了工作时间。

2、风险零遗漏:通过预设的检查清单,AI 能够自动比对合同中的关键条款,确保所有风险点都被识别出来,避免了人为疏忽导致的遗漏。

3、格式标准化:输出的结构化评审报告,清晰直观地展示合同审查结果,方便后续的分析和处理。

三、手把手教学:5 步搭建智能评审流水线

下面,我们将详细介绍如何使用 Dify 平台,通过 4个步骤搭建起这套智能合同评审流水线。整个工作流的全景为:

开始节点:上传文件

添加2个文件类型变量,用于将待评审合同和评审检查清单上传到Dify工作流。

文档提取器节点:智能解析

Dify 平台支持节点并行处理,相当于同时开启了多个 “任务窗口”,大大提高了解析效率。
在合同解析过程中,系统会自动提取合同中的关键信息,如甲方乙方、金额、期限等。
对于检查清单,系统也能自动识别评审要点的编号与内容,为后续的智能评审做好准备。

LLM节点:智能评审

在 LLM 配置环节,将检查清单注入上下文,让 AI 能够全面了解评审要求后再对合同内容进行评审。
输出内容采用样例方式进行结构化输出,使得输出结果清晰明了,易于理解。

系统提示词样例:

“你是公司法务专家,请根据里的检查项目,对合同内容进行评审。请严格按照检查清单,逐项评估合规程度,并对每一项进行评分,最后对合同整体进行评分合计,并进行总结。输出内容格式如下:
 
合同名称
 
检查项:
检查项目一
1,不符合项原文
不符合原因说明
2,不符合项原文
不符合项说明
。。。
 
检查项评分及修改意见
检查项二
1,不符合项原文
不符合原因说明
2,不符合项原文
不符合项说明
。。。
检查项评分及修改意见
 
合同总结
合同评审总分及整体评估意见总结“

输出节点:结果呈现

将LLM节点的输出文本传递到结束节点的输出变量里。

四、未来进化:合同智能评审的 N 种可能

随着 AI 技术的不断发展,合同评审的未来充满了无限可能:

1、多语言合同支持:在全球化的背景下,多语言合同的审查需求日益增加。合同评审应该支持多种语言,打破语言障碍,实现全球合同的高效审查。

2、自动修订文件:不仅能够识别合同中的风险点,还能根据预设的规则和模板,自动对合同进行修订,提供更加完善的解决方案。

3、集成 OCR 识别扫描件:对于纸质合同,通过集成 OCR技术,实现扫描件的自动识别和审查,进一步扩大 AI 合同评审的应用范围。

4、风险等级智能排序:根据风险的严重程度和影响范围,对识别出的风险点进行智能排序,帮助评审人员优先处理高风险问题。

转自:https://zhuanlan.zhihu.com/p/1891466957267649738

### 关于 Dify 流水线的示例 Dify 是一种支持后端即服务(Backend as a Service, BaaS)的功能框架,其设计目标是通过提供丰富的 API 接口来简化与其他系统的集成过程[^1]。这意味着开发者可以利用这些接口构建复杂的业务逻辑链路,从而形成所谓的“流水线”。以下是关于如何实现和配置 Dify 流水线的相关信息。 #### 使用 Dify 构建流水线的核心概念 Dify 提供了一系列工具和服务,允许用户将其无缝嵌入现有的技术栈中。例如,在私有化部署场景下,可以通过定义特定的工作流节点并串联起来完成复杂任务处理。这种工作方式类似于机器学习中的管道机制,其中每一步都可以独立优化或者替换而不影响整体结构。 #### 实现文本补全功能作为流水线的一部分 如果希望创建一个基于大语言模型(LLM)的文字生成应用,则可以从官方文档提到的例子入手[^2]: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM def run_text_completion(): model_name_or_path = "Meta-Llama-3-8B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) prompt = "Once upon a time," inputs = tokenizer(prompt, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) if __name__ == "__main__": torchrun("--nproc_per_node", "1", "example_text_completion.py", "--ckpt_dir", f"{model_name_or_path}/", "--tokenizer_path", f"{model_name_or_path}/tokenizer.model", "--max_seq_len", "128", "--max_batch_size", "4") # 这里仅展示参数调用方法 ``` 上述脚本展示了如何加载预训练模型并通过指定输入序列长度等超参数来进行推理操作。值得注意的是,虽然此片段主要关注单步执行流程,但在实际项目开发过程中,可以根据需求扩展成为多阶段协作模式——这就是典型的流水线架构雏形之一。 另外需要注意的是,当涉及到敏感数据保护时,可能还需要引入额外的安全措施比如增加内容审核组件以确保输出符合伦理标准^。 而对于那些倾向于依赖开源社区资源而非自行搭建环境的人来说,HuggingFace Transformers 库同样提供了便捷途径去快速启动类似的应用程序[^3]: ```bash pip install huggingface_hub transformers accelerate safetensors bitsandbytes transformers-cli login huggingface-cli space create my-dify-pipeline --type repository cd my-dify-pipeline && git lfs track "*.safetensors" >> .gitattributes ``` 以上命令帮助建立了基础目录布局以及版本控制系统初始化步骤,便于后续迭代改进整个解决方案. 最后提醒一点,尽管当前讨论围绕具体编码实践展开论述,但真正成功的流水线往往离不开详尽规划前期调研分析环节,包括但不限于性能指标设定、成本效益评估等方面考量因素.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值