(看这篇就够了)keras使用GPU加速运算

最近有机会蹭组里的图形工作站跑DNN,想着终于有机会感受一下GPU的速度,结果网上一看全是细节性的教程,对小白十分不友好。经过一下午的鼓捣,踩了一些坑,最后终于弄好了,在这里全面的记录一下经过,大部分人按这个步骤走应该都能no error。

总述

keras使用CPU和GPU运算没有任何的语法差别,它能自动地判断能不能使用GPU运算,能的话就用GPU,不能则CPU。你只需要在代码开头加上下面这一句就行了,“0”指的是GPU编号,在cmd窗口输入nvidia-smi命令即可查看可用的GPU。

os.environ["CUDA_VISIBLE_DEVICES"]="0"

好,相信大部分人此时运行都会报错,这是因为你没有配置好支持GPU运算的环境,因此想要使用GPU加速运算的主要任务就是配环境!!总的来说,需要配置以下几大部分:

1.tensorflow-gpu

2.适合版本的nvidia驱动、CUDA、cuDNN

没错,就是这么简单,只要你把上面的四个东西装好了,你的神经网络模型就能在GPU上跑起来了,而其中的关键点就是:版本契合!下面我们分开来讲

写本文时我的环境配置:

tensorflow-gpu:2.0
keras:2.3
nvidia driver:441.41
CUDA:10.0
cuDNN:7.6.4 for CUDA 10.9

Tensorflow-gpu

众所周知,ke

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值