最近有机会蹭组里的图形工作站跑DNN,想着终于有机会感受一下GPU的速度,结果网上一看全是细节性的教程,对小白十分不友好。经过一下午的鼓捣,踩了一些坑,最后终于弄好了,在这里全面的记录一下经过,大部分人按这个步骤走应该都能no error。
总述
keras使用CPU和GPU运算没有任何的语法差别,它能自动地判断能不能使用GPU运算,能的话就用GPU,不能则CPU。你只需要在代码开头加上下面这一句就行了,“0”指的是GPU编号,在cmd窗口输入nvidia-smi命令即可查看可用的GPU。
os.environ["CUDA_VISIBLE_DEVICES"]="0"
好,相信大部分人此时运行都会报错,这是因为你没有配置好支持GPU运算的环境,因此想要使用GPU加速运算的主要任务就是配环境!!总的来说,需要配置以下几大部分:
1.tensorflow-gpu
2.适合版本的nvidia驱动、CUDA、cuDNN
没错,就是这么简单,只要你把上面的四个东西装好了,你的神经网络模型就能在GPU上跑起来了,而其中的关键点就是:版本契合!下面我们分开来讲
写本文时我的环境配置:
tensorflow-gpu:2.0
keras:2.3
nvidia driver:441.41
CUDA:10.0
cuDNN:7.6.4 for CUDA 10.9
Tensorflow-gpu
众所周知,ke