使用投影计算两条直线交点

本文介绍了如何通过投影计算来找到两条直线的交点。利用直角三角形的相似性质,得出比例关系l1/l2 = a1/a2,并结合投影相似原理推导出交点坐标x0和y0的计算公式。通过定义变量factor,可以简洁地求得交点坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如下图已知点P1,P2位于被P3和P4确定直线的两侧,两线段交予点(x0, y0)


易得P2到直线距离为l2,投影为(x2, y2),P1直线距离为l1,投影为(x1, y1)

因为这两个直角三角形相似,所以进一步得到 l1/ l2 = a1/ a2

又因为"投影相似原理”得到 a1 / a2 = (y1 - y0)  /  (y0 - y2) 和 a1 / a2 = (x1 - x0) / (x0 - x2)

定义变量

float factor = l1/l2;

x0 = (x1 - factor * x2) / (1.f + factor);

y0 = (y1 - factor * y2) / (1.f + factor);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值