一、先做列联表分析
(两个都是定类变量,如果是数值型,就把它分组,每个组起一个名字)
这一步是为了先知道行和列的两个变量之间有没有相关性,有相关性才能做对应性分析。
【加权个案】 用人数加权
【分析】-【描述统计】-【交叉表格】将【统计】-卡方和相关性,【单元格】中的期望值选中
从卡方检验结果表格可知,卡方检验的相伴概率p值为0.000,小于0.05,说明行变量和列变量不是相互独立的,即肺活量和性别之间不是独立的,而是存在相关性。
皮尔森相关系数r等于-0.344,相伴概率p为0.000,说明两个性别变量和肺活量变量存在一定的负相关性,即男生的平均肺活量比女生的大。斯皮尔曼相关系数给出了同样的结果。
二、【分析】– 【降维】– 【对应分析】
行和列选进去以后,要定义范围
默认的选项即可,双标图一定要有
分析的是摘要表~
分析的结果解释:
2)卡方检验及P值:用于检验变量之间是否存在关联。如果行、列变量之间没有关联(P值大于0.2)就没有进行对应分析的必要了。
p值小于0.05可知,行列变量之间存在一定的相关性。p值很小说明列联表的行与列之间有较强的相关性。
从表格中可以看出,原始交叉表中最多可以提取三个维度,因为第一维度与第二个维度已经可以解释99.6% 的信息了,而第三个维度只携带0.4%的信息,所以第三个维度可以忽略,只考察前两个维度的信息。
在对应分析图中,分别向x轴和y轴加入参考线,并将位置改在原点0.0处。可以得到原点(