SPSS学习笔记——对应分析

本文介绍了如何使用SPSS进行对应分析,首先通过列联表分析确定变量间存在相关性,然后通过【分析】-【降维】-【对应分析】进行深入探讨。通过对应分析图,可以观察到性别、年龄等因素与不同偏好之间的关联,揭示各变量间的内在关系。
摘要由CSDN通过智能技术生成

一、先做列联表分析

(两个都是定类变量,如果是数值型,就把它分组,每个组起一个名字)
这一步是为了先知道行和列的两个变量之间有没有相关性,有相关性才能做对应性分析。
【加权个案】 用人数加权
【分析】-【描述统计】-【交叉表格】将【统计】-卡方和相关性,【单元格】中的期望值选中

从卡方检验结果表格可知,卡方检验的相伴概率p值为0.000,小于0.05,说明行变量和列变量不是相互独立的,即肺活量和性别之间不是独立的,而是存在相关性。

皮尔森相关系数r等于-0.344,相伴概率p为0.000,说明两个性别变量和肺活量变量存在一定的负相关性,即男生的平均肺活量比女生的大。斯皮尔曼相关系数给出了同样的结果。

二、【分析】– 【降维】– 【对应分析】

行和列选进去以后,要定义范围
默认的选项即可,双标图一定要有
分析的是摘要表~
分析的结果解释:
2)卡方检验及P值:用于检验变量之间是否存在关联。如果行、列变量之间没有关联(P值大于0.2)就没有进行对应分析的必要了。
p值小于0.05可知,行列变量之间存在一定的相关性。p值很小说明列联表的行与列之间有较强的相关性。
从表格中可以看出,原始交叉表中最多可以提取三个维度,因为第一维度与第二个维度已经可以解释99.6% 的信息了,而第三个维度只携带0.4%的信息,所以第三个维度可以忽略,只考察前两个维度的信息。

在对应分析图中,分别向x轴和y轴加入参考线,并将位置改在原点0.0处。可以得到原点(

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值