快速幂 矩阵快速幂 + 斐波那契数

相关博文:
添加链接描述
添加链接描述

相关题目:
poj3070(板子题)
解题思路:矩阵快速幂求斐波那契数列第n项,至于题目里说的去掉前导0,不用管本来直接int就不会打印出前导0(如果要加上前导0也很简单,printf("%d\n",b[0][1])改成printf("%04d\n",b[0][1])即可)

接下来是我的ac代码:

#include<iostream>
#include<cstdio>
#include<cstring>
//#include<bits\stdc++.h>提交的时候要勾选g++提交

using namespace std;

int ans[2][2];
int a[2][2]={0},b[2][2]={0};
const int mod=10000;

//矩阵乘法
void matrix(int a[2][2],int b[2][2],int ans[2][2])
{
    int t[2][2]={0};
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){
            for(int k=0;k<2;k++){
                t[i][j]=(t[i][j]+a[i][k]*b[k][j])%mod;
            }
        }
    }
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){
            ans[i][j]=t[i][j];
        }
    }//本来用的是memcpy(ans,t,sizeof(ans));但是用这个却没有结果,用循环反而有结果,没想明白,memcpy不是更高效吗?
}

//快速幂
void quick_pow(int n)
{
    while(n){
        if(n&1)matrix(a,b,b);//跟快速幂是一样的,相当于ans=(ans*x)%mod
        matrix(a,a,a);
        n=n>>1;
    }
}

int main()
{
    int n;
    while(~scanf("%d",&n)&&n!=-1){
        a[0][0]=a[0][1]=a[1][0]=1,a[1][1]=0;
        b[0][0]=b[1][1]=1,b[0][1]=b[1][0]=0;//创建单位矩阵,即[i][i]位均为1,其他位位0时为单位数组
        quick_pow(n);
        printf("%04d\n",b[0][1]);//根据矩阵乘法及斐波那契数列规律知道打印b[1][0]也是一样的,都代表Fn
    }
    return 0;
}

hdu3306
知识点:递推+矩阵构造,利用矩阵解斐波那契前n项和,膜拜大佬构造方法,请参考这篇文章
分析:An+1=xAn+yAn-1
Sn+1=Sn+An+1^2
=Sn+x^2 * An^2 +y^2 * An-1^ 2+2xyAnAn-1
An+1An=xAn^2 + yAn-1An
由这三个式子可以构造矩阵,右乘矩阵A见代码,左乘矩阵S={Sn,An^2, An-12,An*An-1},初始化为{S1,A12 , A0^2 , A1*A0},右乘矩阵乘n-1次幂后可得结果Sn存在S[0]中
ac代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;

typedef long long ll;
const int mod=10007,N=4;
ll A[N][N],S[N];

void matrix1(ll a[][N],ll b[N])
{
    ll t[N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            t[i]+=a[i][j]*b[j];
        }
    }
    for(int i=0;i<N;i++)b[i]=t[i]%mod;
}

void matrix2(ll a[][N],ll b[][N])
{
    ll t[N][N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t[i][j]+=a[i][k]*b[k][j]%mod;
            }
        }
    }
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            a[i][j]=t[i][j]%mod;
        }
    }
}

void mat_pow(ll n)
{
    while(n){
        if(n&1)matrix1(A,S);
        matrix2(A,A);
        n>>=1;
    }
}

int main()
{
    ll n,x,y;
    while(cin>>n>>x>>y){
        A[0][0]=1,A[0][1]=A[1][1]=x*x%mod,A[0][2]=A[1][2]=y*y%mod;
        A[0][3]=A[1][3]=2*x*y%mod,A[1][0]=A[2][0]=A[2][2]=A[2][3]=A[3][0]=A[3][2]=0;
        A[2][1]=1,A[3][1]=x%mod,A[3][3]=y%mod;
        S[0]=2,S[1]=S[2]=S[3]=1;
        mat_pow(n-1);
        cout<<(S[0]%mod+mod)%mod<<endl;
    }
    return 0;
}

hdu3524 规律题(用高中数学知识构造通项公式,然后注意一下要用费马小定理求逆元)

/**先自己写程序模拟计算过程跑出结果,然后找规律
 * 打表如下
 * n对应的sum值从1开始分别为:2,2,3,4,7,12,23,44,87,172...
 * (ps:暴力模的话到n=12以后我就跑不出结果了,n=9包括之前的结果都没问题,之后
 * 的不行,这种方法慎用,不然结果都跑错了后面就不用推了,还是手算几组数据比较
 * 安全,但是手算好累啊我的天-_-)
 * 发现奇数项和偶数项规律递增,仔细观察
 * n   sum
 * 1    2
 * 3    3=2+2^0
 * 5    7=2+2^0+2^2
 * 7    23=2+2^0+2^2+2^4
 * 9    87=2+2^0+2^2+2^4+2^6
 * ...
 * 2    2
 * 4    4=2+2^1
 * 6    12=2+2^1+2^3
 * 8    44=2+2^1+2^3+2^5
 * 10   172=2+2^1+2^3+2^5+2^7
 * ...
 * 
 * 可以发现奇数项是:2+2^0+2^2+2^4+...(共有(n+1)/2这么多项数)
 * 同理发现偶数项是:2+2^1+2^3+2^5+2^7+...(共有n/2这么多项数)
 * 
 * 对奇数项:
 * a1=2 
 * a2-a1=2^0
 * a3-a2=2^2
 * a4-a3=2^4
 * ...
 * an-an-1=2^(2n-4)(n是该项在奇数项中的位置)
 * 构造奇数项通项公式为:an=2+(4^(n-1)-1)/3
 * 
 * 对偶数项:
 * a1=2
 * a2-a1=2^1
 * a3-a2=2^3
 * a4-a3=2^5
 * ...
 * an-an-1=2^(2*(n-1)-1)=2^(2n-3)
 * 构造偶数项通项公式为:an=2*(4^(n-1)/3+1)
 * 
 * 额,高中数学构造通项公式的知识点都有点忘了,,,真的是,,,
 * 我这是在写数学吧,果然还是数学强,哪里都用得到
*/

#include<iostream>
#include<cstring>
#include<cmath>

using namespace std;

typedef long long ll;

const int mod=10007;

ll quick_pow(ll x,ll y)
{
    ll ans=1;
    while(y){
        if(y&1)ans=(ans*x)%mod;
        x=(x*x)%mod;
        y>>=1;
    }
    return ans%mod;
}

const int inv=quick_pow(3,mod-2);

int main()
{
    ll n,t;
    cin>>t;
    for(int i=1;i<=t;i++){
        cin>>n;
        ll ans;
        if(n&1){
            n=(n+1)/2;
            ans=(2+(quick_pow(4,n-1)-1)*inv)%mod;//注意一定不能直接除以3,会wa,得运用费马小定理求出3的逆元以后转化成乘以3的逆元
        }else{
            n=n/2;
            ans=(2*((quick_pow(4,n-1)-1)*inv+1))%mod;
        }
        printf("Case #%d: %lld\n",i,ans%mod);
    }
    //system("pause");
    return 0;
}

acwing1303 斐波那契前n项和
思路:递推公式+矩阵构造
ac code:
20ms

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;

typedef long long ll;
ll n,mod;
const int N=3;
ll A[N][N]={
    {2,0,-1},
    {1,0,0},
    {0,1,0},
};
ll S[N]={2,1,0};

void matrix1(ll a[][N],ll b[N])
{
    ll t[N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            t[i]+=a[i][j]*b[j]%mod;
        }
    }
    for(int i=0;i<N;i++)b[i]=t[i]%mod;
}

void matrix2(ll a[][N],ll b[][N])
{
    ll t[N][N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t[i][j]+=a[i][k]*b[k][j]%mod;
            }
        }
    }
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            a[i][j]=t[i][j]%mod;
        }
    }
}

void mat_pow(ll n)
{
    while(n){
        if(n&1)matrix1(A,S);
        matrix2(A,A);
        n>>=1;
    }
}

int main()
{
    cin>>n>>mod;
    mat_pow(n);
    cout<<(S[2]%mod+mod)%mod<<endl;
    return 0;
}

改结构体板子:
ac 17ms

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;

typedef long long ll;
ll n,mod;
const int N=3;

struct res{
    ll a[N][N];
    ll b[N];
    res(){
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
    }
};

res matrix1(res A,res B)
{
    res T;
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            T.b[i]+=A.a[i][j]*B.b[j]%mod;
        }
    }
    for(int i=0;i<N;i++)B.b[i]=T.b[i]%mod;
    return T;
}

res matrix2(res A,res B)
{
    res T;
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                T.a[i][j]+=A.a[i][k]*B.a[k][j]%mod;
            }
        }
    }
    return T;
}

res mat_pow(ll n)
{
    res A,S;
    A.a[0][0]=2,A.a[0][1]=A.a[1][1]=A.a[1][2]=A.a[2][0]=A.a[2][2]=0;
    A.a[0][2]=-1,A.a[1][0]=A.a[2][1]=1;
    S.b[0]=2,S.b[1]=1,S.b[2]=0;
    while(n){
        if(n&1)S=matrix1(A,S);
        A=matrix2(A,A);
        n>>=1;
    }
    return S;
}

int main()
{
    cin>>n>>mod;
    res ans=mat_pow(n);
    cout<<(ans.b[2]%mod+mod)%mod<<endl;
    return 0;
}

awing1304 斐波那契+递推+矩阵快速幂
分析:Sn=F1+2F2+…+nFn
Sn=Sn-1+nFn
=Sn-1+n(Fn-1+Fn-2)
=Sn-1+(n-1)Fn-1+(n-2)Fn-2+Fn-1+2Fn-2
=Sn-1+Sn-1-Sn-2+Sn-2-Sn-3+Fn-1+2Fn-2
=2Sn-1-Sn-3+Fn-1+2Fn-2
由Sn=2Sn-1-Sn-3+Fn-1+2Fn-2构造构造矩阵A,A数值见代码,A={{2,0,-1,1,2},{1,0,0,0,0},{0,1,0,0,0},{0,0,0,1,1},{0,0,0,1,0}};S[N]={Sn-1,Sn-2,Sn-3,Fn-1,Fn-2},因此A通过矩阵快速幂n次方后乘以S的初始矩阵{S2,S1,S0,F2,F1}以后的结果存入S,得S={Sn+2,Sn+1,Sn,Fn+2,Fn+1},结果存在S[2]中,取出结果即可

ac:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;

typedef long long ll;
ll n,mod;
const int N=5;
ll A[N][N]={
    {2,0,-1,1,2},
    {1,0,0,0,0},
    {0,1,0,0,0},
    {0,0,0,1,1},
    {0,0,0,1,0}
};
ll S[N]={3,1,0,1,1};

void matrix1(ll a[][N],ll b[N])
{
    ll t[N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            t[i]+=a[i][j]*b[j]%mod;
        }
    }
    for(int i=0;i<N;i++)b[i]=t[i]%mod;
}

void matrix2(ll a[][N],ll b[][N])
{
    ll t[N][N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t[i][j]+=a[i][k]*b[k][j]%mod;
            }
        }
    }
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            a[i][j]=t[i][j]%mod;
        }
    }
}

void mat_pow(ll n)
{
    while(n){
        if(n&1)matrix1(A,S);
        matrix2(A,A);
        n>>=1;
    }
}

int main()
{
    cin>>n>>mod;
    mat_pow(n);
    cout<<(S[2]%mod+mod)%mod<<endl;
    return 0;
}

HAOI2015 矩阵DP
。。。
向量内积
本来以为就是直接矩阵乘法计算向量内积,没想到还要用转置矩阵,而且还要直接分出k=2和k=3两种情况来做,比较复杂。。。先放放(case:15.00%,代码见牛客账号)
hdu2817 快速幂+等比等差公式
题意:给出前三个数,发现他的规律,并打印第k个数的结果
分析:通过前三个数的规律可以知道这个序列的规律,因此,数列要么是等比,要么是等差,如果a1+a3=2a2,则为等差,否则等比,然后直接套用等差等比的通项公式即可求解,等比第k项求解时记得取模

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

typedef long long ll;

const int mod=200907;

ll quick_pow(ll x,ll y)
{
    ll ans=1;
    while(y){
        if(y&1)ans=(ans*x)%mod;
        x=(x*x)%mod;
        y>>=1;
    }
    return ans%mod;
}

int main()
{
    ll t,a,b,c,d,ans;
    scanf("%lld",&t);
    while(t--){
        scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
        if((a+c)==(b+b)){
            ans=(a+(d-1)*(b-a))%mod;
        }else{
            b=(b/a)%mod;
            a%=mod;
            ans=a*quick_pow(b,d-1)%mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

hdu1575 模板题

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>

using namespace std;

typedef long long ll;
const int mod=9973;
const int M=12;
int N;

struct res{
    int arr[M][M];
    res(){
        memset(arr,0,sizeof(arr));
    }
};

res matrix(res a,res b)
{
    res t;
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t.arr[i][j]=(t.arr[i][j]%mod+a.arr[i][k]*b.arr[k][j]%mod)%mod;
            }
        }
    }
    return t;
}

res mat_pow(res a,int n)
{
    res ans;
    for(int i=0;i<N;i++)ans.arr[i][i]=1;
    while(n){
        if(n&1)ans=matrix(ans,a);
        a=matrix(a,a);
        n>>=1;
    }
    return ans;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--){
        int k;
        scanf("%d%d",&N,&k);
        res a;
        for(int i=0;i<N;i++){
            for(int j=0;j<N;j++){
                scanf("%d",&a.arr[i][j]);
            }
        }
        a=mat_pow(a,k);
        ll sum=0;
        for(int i=0;i<N;i++){
            sum+=a.arr[i][i]%mod;
        }
        printf("%lld\n",sum%mod);
    }
    return 0;
}

Matrix Multiplication
矩阵快速幂简单题

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

typedef long long ll;
const int N=30;
int A[N][N],B[N][N],t[N][N];

void matrix(int a[N][N],int b[N][N],int n1,int m2,int m)
{
    for(int i=0;i<n1;i++){
        for(int j=0;j<m2;j++){
            for(int k=0;k<m;k++){
                t[i][j]+=a[i][k]*b[k][j];
            }
        }
    }
    for(int i=0;i<n1;i++){
        for(int j=0;j<m2;j++){
            printf("%d ",t[i][j]);
        }
        printf("\n");
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    for(int kase=1;kase<=T;kase++){
        int n1,m1,n2,m2;
        scanf("%d%d%d%d",&n1,&m1,&n2,&m2);
        memset(t,0,sizeof(t));
        for(int i=0;i<n1;i++){
            for(int j=0;j<m1;j++){
                scanf("%d",&A[i][j]);
            }
        }
        for(int i=0;i<n2;i++){
            for(int j=0;j<m2;j++){
                scanf("%d",&B[i][j]);
            }
        }
        printf("Case %d:\n",kase);//注意一下,这个打印要等输入完成以后才可以进行,这种错误别再犯
        if(m1!=n2){printf("ERROR\n");continue;}
        matrix(A,B,n1,m2,m1);
    }
    return 0;
}

布置会场II
思路:举几个例子可以发现规律是斐波那契数,直接矩阵乘法打印斐波那契数就可以,简单题

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>

using namespace std;

typedef long long ll;
const int mod=1000000007;
const int N=2;
ll A[N][N],B[N];

void matrix1(ll a[][N],ll b[N])
{
    ll t[N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            t[i]+=a[i][j]*b[j]%mod;
        }
    }
    for(int i=0;i<N;i++)b[i]=t[i]%mod;
}

void matrix2(ll a[][N],ll b[][N])
{
    ll t[N][N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t[i][j]+=a[i][k]*b[k][j]%mod;
            }
        }
    }
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            a[i][j]=t[i][j]%mod;
        }
    }
}

void mat_pow(ll n)
{
    while(n){
        if(n&1)matrix1(A,B);
        matrix2(A,A);
        n>>=1;
    }
}

int main()
{
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int t;
    cin>>t;
    while(t--){
        ll n;
        cin>>n;
        A[0][0]=A[0][1]=A[1][0]=1,A[1][1]=0;
        B[0]=2,B[1]=1;
        mat_pow(n-1);
        cout<<B[1]%mod<<endl;
    }
    return 0;
}

递推
思路:由题目给出条件an=2*an-1+n^2可以构造左乘矩阵A,以及右乘矩阵B={an-1, n^2, n,1},得答案矩阵{an,(n+1)^2,n+1,1},并将B初始化为{a0,1,1,1},对A求n次方后乘以B,返回B[0]即所求答案(主要还是递推构造矩阵,属于简单题)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>

using namespace std;

typedef long long ll;
const int mod=1000000009;
const int N=4;
ll A[N][N],B[N];

void matrix1(ll a[][N],ll b[N])
{
    ll t[N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            t[i]+=a[i][j]*b[j]%mod;
        }
    }
    for(int i=0;i<N;i++)b[i]=t[i]%mod;
}

void matrix2(ll a[][N],ll b[][N])
{
    ll t[N][N]={0};
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            for(int k=0;k<N;k++){
                t[i][j]+=a[i][k]*b[k][j]%mod;
            }
        }
    }
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            a[i][j]=t[i][j]%mod;
        }
    }
}

void mat_pow(ll n)
{
    while(n){
        if(n&1)matrix1(A,B);
        matrix2(A,A);
        n>>=1;
    }
}

int main()
{
    ll n;
    while(~scanf("%lld",&n)){
        A[0][0]=A[1][2]=2,A[0][1]=A[1][1]=A[1][3]=A[2][2]=A[2][3]=A[3][3]=1;
        A[0][2]=A[0][3]=A[1][0]=A[2][0]=A[2][1]=A[3][0]=A[3][1]=A[3][2]=0;
        B[0]=0,B[1]=1,B[2]=1,B[3]=1;
        mat_pow(n);
        printf("%lld\n",B[0]%mod);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值