tf.keras.activation.selu(X)
减缓梯度消失
selu=scale * elu(x,alpha),其中alpha和scale是预定义的常量。 选择alpha和scale的值,以便在两个连续层之间保留输入的平均值和方差,只要正确初始化权重并且输入的数量“足够大”。
elu:融合relu和sigmoid,
其他方法:
添加批归一化
tf.keras.activation.selu(X)
减缓梯度消失
selu=scale * elu(x,alpha),其中alpha和scale是预定义的常量。 选择alpha和scale的值,以便在两个连续层之间保留输入的平均值和方差,只要正确初始化权重并且输入的数量“足够大”。
elu:融合relu和sigmoid,
其他方法:
添加批归一化