luxiaohai的学习专栏
码龄10年
关注
提问 私信
  • 博客:117,935
    117,935
    总访问量
  • 12
    原创
  • 724,935
    排名
  • 35
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-09-16
博客简介:

luxiaohai学习专栏

博客描述:
止于至善
查看详细资料
个人成就
  • 获得49次点赞
  • 内容获得28次评论
  • 获得229次收藏
创作历程
  • 8篇
    2018年
  • 4篇
    2017年
成就勋章
TA的专栏
  • 双目视觉
    4篇
  • caffe
  • tensoflow
    2篇
  • python
  • 深度学习
    1篇
  • 神经网络
    2篇
  • 机器学习
    3篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ReLU、LReLU、PReLU、CReLU、ELU、SELU

ReLULReLUPReLUCReLUELUSELUReLU tensorflow中:tf.nn.relu(features, name=None)LReLU(Leaky-ReLU) 其中aia_i是固定的。ii表示不同的通道对应不同的aia_i. tensorflow中:tf.nn.leaky_relu(features, alpha=0.2, name=None)PReLU
原创
发布博客 2018.01.22 ·
74020 阅读 ·
37 点赞 ·
1 评论 ·
200 收藏

论文阅读《Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching》

摘要介绍相关工作堆叠残差学习1 两阶段视差计算2 多尺度残差学习3 网络架构实验1 实验设置2 架构对比3 和其他方法比较总结参考文献摘要为解决在立体匹配内在的病态区域(目标遮挡、重复模式、无纹理区域等)难产生高质量的视差问题,这篇论文提出一种新颖的由两个阶段组成的堆叠卷积神经网络结构。第一个阶段:利用DispNet,加上额外的能够使视差图获得更
原创
发布博客 2018.01.21 ·
5100 阅读 ·
1 点赞 ·
12 评论 ·
16 收藏

在docker中使用tensorboard以及docker的可视化

在docker中使用tensorboard docker无法打开两个窗口同时做不同的事,而启用tensorboard时,需要打开一个窗口启动tensorboard,然后打开另外一个窗口启动浏览器。因此一般不能在docker环境下使用tensorboard,因为docker使用tensorboard时启动的端口6006是属于这个docker容器的,因此在Linux系统上无法直接用浏览器打开这个端口
原创
发布博客 2018.01.19 ·
6896 阅读 ·
1 点赞 ·
2 评论 ·
5 收藏

论文阅读笔记《PatchMatch Stereo - Stereo Matching with Slanted Support Windows》

摘要介绍算法1 模型2 通过PatchMatch方法来计算视差3 后处理4 为全局方法建立一个数据项实验结果摘要一般的局部立体方法是在一个具有整型数值视差的支持窗口中进行匹配。其中隐含的一个假设:在支持区域中的像素具有恒定的视差,这个假设在倾斜表面是不成立的,因而倾向于重建前端平行的表面。本论文通过估计每个像素上的一个单独的3D平面,并在此基础上投射出支持区域
原创
发布博客 2018.01.13 ·
12140 阅读 ·
3 点赞 ·
7 评论 ·
32 收藏

深度学习中的五大正则化技术

1 数据增强2 L1 和 L2 正则化3 Dropout4 Drop Connect5 早停法正则化技术是保证算法泛化能力的有效工具,它可以令参数数量多于输入数据量的网络避免产生过拟合现象。1.1 数据增强数据增强是提升算法性能、满足深度学习模型对大量数据的需求的重要工具。数据增强通过向训练数据添加转换或扰动来人工增加训练数据集。数据增强技术如水平或垂直翻转图像、
原创
发布博客 2018.01.04 ·
3748 阅读 ·
2 点赞 ·
0 评论 ·
16 收藏

极大似然估计 极大后验估计 贝叶斯估计 最小二乘法

极大似然估计极大后验估计贝叶斯估计最小二乘法1 极大似然估计极大似然估计(Maximum Likelihood Estimation, MLE)/最大似然估计/最大概似估计 是一种参数估计方法,即已知样本估计出模型的参数。一般说来,事件A发生的概率与某一未知参数θ\theta有关,θ\theta取值不同,则事件A发生的概率 P(A|θ)P(A|\theta)也不同,当我们在一次试验中事件A发生
原创
发布博客 2018.01.04 ·
2362 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

决策树

决策树(decision tree):基本的分类与回归方法。决策树模型与学习1 决策树模型2 决策树学习特征选择1 信息增益information gain2 信息增益比information gain ratio决策树的生成1 ID3算法2 C45的生成算法决策树的剪枝CART算法1 决策树模型与学习1.1 决策树模型分类决策树模型
原创
发布博客 2018.01.03 ·
905 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

朴素贝叶斯法

贝叶斯定理贝叶斯推断朴素贝叶斯法贝叶斯定理贝叶斯定理(Bayes’ theorem): 实际上就是计算”条件概率”的公式。 所谓”条件概率”(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 最后得到条件概率计算公式为: 贝叶斯推断全概率公式: 假定样本空间S,是两个事件A与A’的和。在这种情况下,事件B可以划分成
原创
发布博客 2018.01.02 ·
338 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习中的卷积与反卷积

卷积卷积与矩阵乘法的关系卷积与反卷积的关系普通的神经网络(全连接网络):只能处理向量,因而需要把常见的把图像、音频等高维输入数据展开成向量才能输入给神经网络,这大大破坏了数据在空间上的位置信息。卷积和反卷积:使得神经网络能够处理二维以上的数据,因而能够保持数据在空间上的位置信息。另外,权重共享使得网络参数大大减少,从而降低了计算复杂度。卷积首先假设对于卷积,已知: input size i1=
原创
发布博客 2017.12.29 ·
1248 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

论文笔记《Learning Deep Correspondence through Prior and Posterior Feature Constancy》

摘要介绍相关工作本论文方法1 用于多尺度特征提取的茎块2 初始视差估计子网络3 视差精细化子网络4 迭代精细化实验1 脱离实验 2 测试基准结果总结参考文献摘要立体匹配算法通常由四步组成:代价计算、代价聚合、视差计算和视差精细化。现有的基于CNN的立体匹配方法仅仅采用CNN来解决四步中的部分,或者使用不同的网络来处理不同的步骤,这使得它们很难获得全局最优的解决方案。这篇论文提
原创
发布博客 2017.12.25 ·
2446 阅读 ·
0 点赞 ·
5 评论 ·
7 收藏

论文笔记《End-to-End Training of Hybrid CNN-CRF Models for Stereo》用于立体评估的端到端训练的混合CNN-CRF模型

论文作者提供的源码 https://github.com/VLOGroup摘要:1. 介绍2. 相关工作3. CNN-CRF 模型3.1 Unary CNN3.2 Correlation3.3 CRF3.4 Pairwise CNN4. 训练5. 实验5.1 单独组件的性能5.2 联合训练的好处5.3 性能测试6. 总结摘要:本文提出一...
原创
发布博客 2017.12.21 ·
3424 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

tensorflow版本的一些区别

1.变量初始化函数:if tensorflow.__version__ sess.run(tf.initialize_all_variables())else:sess.run(tf.global_variables_initializer())2. 写日志函数;if tensorflow.__version__ logsWriter = tf.train.
原创
发布博客 2017.12.16 ·
5301 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏