使用ARIMA算法进行时间序列预测。

本文通过爬取行健宏扬中国数据,利用ARIMA模型进行时间序列预测。介绍了数据提取、处理、构建时间序列、差分操作、确定模型参数及预测未来价格变化。
摘要由CSDN通过智能技术生成

本文以行健宏扬中国为例,提取数据,使用ARIMA算法进行时间序列预测。

爬取数据



# 抓取行健宏扬中国基金
from bs4 import BeautifulSoup
import requests

headers = {'Accept':'text/javascript, application/javascript, */*; q=0.01',
           'Accept-Encoding':'gzip, deflate',
           'Accept-Language':'zh-CN,zh;q=0.8',
           'Connection':'keep-alive',
           'Cookie':'vjuids=148cf0186.15e03abf2ac.0.c311af0ddaa6c; ADVS=358187b0bd1a65; ASL=17431,000pn,7010519170105191; jrj_uid=15060593555978DJcIwmvnb; jrj_z3_newsid=723; ADVC=35686f6caeedf3; WT_FPC=id=2ef30c6a0af7eaf3a501506059355507:lv=1506063782501:ss=1506063782501; channelCode=3763BEXX; ylbcode=24S2AZ96; vjlast=1503300154.1506059356.23; Hm_lvt_a07bde197b7bf109a325eebaee445939=1506059356; Hm_lpvt_a07bde197b7bf109a325eebaee445939=1506063783',
           'Host':'fund.jrj.com.cn',
           'Referer':'http://fund.jrj.com.cn/archives,968006,jjjz.shtml',
           'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
           'X-Requested-With':'XMLHttpRequest'}

params = {'fundCode':'968006',
          'obj':'obj',
          'date':2017}

r = requests.get('http://fund.jrj.com.cn/json/archives/history/netvalue?',params=params,headers=headers)
r.encoding ='utf-8'
mydata = r.text

存储数据



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值