将tensor数据归一化至0-1之间的便利API

在PyTorch中,可以使用torch.nn.functional.normalize()函数对张量数据进行归一化处理,将数值范围缩放到0-1之间。示例代码展示了如何对二维张量进行L1范数归一化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做项目的时候遇到需要将tensor数据归一化至0-1之间,网上找了挺久,找到了一个比较好用的方法

torch.nn.functional.normalize()

实例:

>>> x
tensor([[ 1,  2, 34],
        [ 4,  5,  6]])

>>> F.normalize(x.float(),p=1,dim=1)
tensor([[0.0270, 0.0541, 0.9189],
        [0.2667, 0.3333, 0.4000]])

 

输入

print(out)
tensor([[0.4879, 0.3976],
        [0.4894, 0.4350]], device='cuda:0', grad_fn=<AddBackward0>)


归一化:

out = nn.functional.normalize(out, p=1, dim=1)

结果:

print(out)
tensor([[0.5510, 0.4490],
        [0.5294, 0.4706]], device='cuda:0', grad_fn=<DivBackward0>)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值