paper
文章平均质量分 96
1226km
这个作者很懒,什么都没留下…
展开
-
数据集蒸馏论文(七):Dataset Distillation using Neural Feature Regression
数据集蒸馏可以被表述为一个双层元学习问题,其中外环优化元数据集,内环在蒸馏数据上训练模型。元梯度计算是该公式中的关键挑战之一,因为通过内环学习过程进行区分会引入显著的计算和内存成本。本文使用带有池化的神经特征回归(FRepo)来解决这些挑战,实现了最先进的性能,且内存需求减少了一个数量级,训练速度快了两个数量级。所提出的算法类似于用模型池截断时序反向传播,以缓解数据集蒸馏中的各种类型的过拟合。提出一种高效的元梯度计算方法和一个“模型池”,以解决过拟合问题。翻译 2024-03-22 15:07:46 · 215 阅读 · 0 评论 -
数据集蒸馏论文(六):Dataset Distillation by Matching Training Trajectories
引导网络在多个训练steps中达到与在真实数据上训练的网络相似的状态给定一个网络,进行多次迭代,并计算合成数据训练参数与真实数据训练参数之间的距离,优化蒸馏数据为了有效地获得大规模数据集的初始和目标网络参数,预先计算和存储在真实数据集上训练的专家网络的训练轨迹蒸馏算法必须通过在不完全消除判别特征的情况下大量压缩信息来取得微妙的平衡为了降低优化难度,其他方法[45,47]专注于短期行为,对蒸馏数据强制执行单个训练step以匹配真实数据。然而,错误可能会在评估中积累。翻译 2024-03-21 09:49:38 · 395 阅读 · 0 评论 -
数据集蒸馏论文(五):Dataset Condensation with Distribution Matching
设计新的深度学习模型或将其应用于新任务需要更多的计算,因为它们涉及在同一数据集上多次训练多个模型以验证设计选择,例如损失函数、架构和超参数[5,14],这需要大量的训练时间。虽然在小压缩图像集上训练深度模型可以非常快,但由于复杂的双层最优化和二阶导数计算,它们的合成仍然计算成本高昂。结合了以前的核心集和数据集压缩方法的优点,同时避免了它们的局限性。与前者不同与后者相同,本文方法不限于原始数据集中的单个样本,并且可以合成训练图像;翻译 2023-12-08 09:51:29 · 339 阅读 · 0 评论 -
数据集蒸馏论文(四):Dataset Condensation with Differentiable Siamese Augmentation
提出可微Siamese增强该方法能够有效地利用数据增强来合成更多信息的合成图像,从而在使用增强训练网络时获得更好的性能。DSA在每次训练迭代中,对采样的真实和合成Data应用相同的随机采样数据转换,并且还允许通过可微数据转换反向传播关于合成Data的损失函数的梯度。如图1(右)所示,对采样的真实和合成batches应用相同程度的旋转。在训练中同时对真实和合成图像应用各种数据转换(例如顺时针旋转15°)具有三个关键优势。翻译 2023-12-07 16:11:38 · 326 阅读 · 0 评论 -
数据集蒸馏论文(三):Dataset condensation with gradient matching
特点:跨模型目的:将大型数据集压缩成一小部分信息丰富的合成样本,用于从头开始训练深度神经网络目标函数:在原始数据上训练的深度神经网络权重的梯度与合成数据之间的梯度匹配问题基于训练损失计算梯度。翻译 2023-12-04 10:45:58 · 539 阅读 · 0 评论 -
数据集蒸馏论文(一):Dataset Distillation A Comprehensive Review(未完成)
合成小样本数据集且保持性能翻译 2023-11-27 15:21:01 · 1408 阅读 · 1 评论 -
数据集蒸馏论文(二):Dataset Distillation
为了解决这个问题,本文转而计算少量蒸馏数据,这些数据可以适用来自特定分布的随机初始化网络。固定初始化的局限性:给定初始化优化的蒸馏数据不能很好地推广到其他初始化。此外,蒸馏图像通常看起来信息丰富,编码了每个类别的判别特征(例如图3)在实践中,我们观察到最终蒸馏数据能够很好地推广到未知初始化。在优化过程中,蒸馏数据被优化为适用于随机初始化网络。蒸馏数据通常看起来像随机噪声,因为它对训练集。算法1说明了我们的主要方法。翻译 2023-11-29 10:45:17 · 376 阅读 · 0 评论 -
AlexNet:论文阅读及pytorch网络搭建
文章目录AlexNetAbstract1 Introduction2 Dataset3 Architecture3.1 ReLU Nonlinearity3.2 Training on Multiple GPUs3.3 Local Response Normalization3.4 Overlapping Pooling3.5 Overall Architecture4 Reducing Overfitting4.1 Data Augmentation4.2 Dropout5 Details of lea原创 2021-11-09 16:44:04 · 351 阅读 · 0 评论 -
论文阅读>烟雾检测:Video-based Smoke Detection Algorithms: A Chronological Survey
文章目录原文------------------------------------------------基于视频的烟雾检测算法:时序调查摘要关键词1 介绍2 现有的烟雾检测算法5 结论参考文献原文Video-based Smoke Detection Algorithms: A Chronological Survey ------------------------------------------------基于视频的烟雾检测算法:时序调查Video-based Smoke Detec翻译 2020-07-17 11:14:04 · 6949 阅读 · 1 评论 -
论文阅读>烟雾检测:Vision based smoke detection system using image energy and color information
原文Vision based smoke detection system using image energy and color information文章目录原文基于图像能量和颜色信息的视觉烟雾检测系统摘要关键词1 介绍2 相关工作3 系统概述4 烟雾分割的背景模型基于图像能量和颜色信息的视觉烟雾检测系统Vision based smoke detection system using image energy and color informationSimone Calderar翻译 2020-07-16 17:45:54 · 3933 阅读 · 0 评论 -
论文阅读>污垢检测:Vision-Based Dirt Detection and Adaptive Tiling Scheme for Selective Area Coverage
文章目录基于视觉的污垢检测和选择性区域覆盖的自适应切片方案摘要1 介绍提出的污垢检测和分割方法2.1 三阶段过滤2.1.1 定期模式检测过滤器2.1.2 边缘检测和增强2.1.3 噪声消除和污垢分析3 多米诺瓷砖3.1 基于自适应平铺的选择性污垢区域覆盖率Tetromino平铺理论3.1.2 自适应的Tetromino平铺算法4 实验,结果和讨论4.1 污垢检测算法验证4.2 使用污垢数据库4.2.1 ACIN污垢数据库4.2.2 Bormann污垢数据库4.3 带有自适应平铺的选择性污垢区域覆盖率4.3.翻译 2020-07-16 16:27:14 · 3594 阅读 · 2 评论 -
论文阅读>烟雾检测:Smoke detection based on imageprocessing by using grey and transparency features
文章目录通过利用灰度和透明度特征基于图像处理的烟雾检测摘要关键词1 介绍2 颜色模型和烟雾特征分析3 系统3.1 烟雾检测算法3.1.1 视频帧转换3.1.2 运动检测和颜色变换通过利用灰度和透明度特征基于图像处理的烟雾检测Smoke detection based on imageprocessing by using grey and transparency featuresAHMED FAKHIR MUTAR, DR. HAZIM GATI’ DWAY摘要在本研究中,我们通过分析早期烟雾的翻译 2020-07-16 10:38:14 · 5987 阅读 · 6 评论