循环神经网络(RNN)与长短期记忆网络(LSTM)讲解

本文介绍了循环神经网络(RNN)及其存在的梯度消失问题,然后详细阐述了长短期记忆网络(LSTM)如何通过门控机制解决这一问题,允许学习长期依赖关系。
摘要由CSDN通过智能技术生成

循环神经网络(RNN)

对于典型的深度神经网络(DNN),就是通过在输入层与输出层之间增加隐藏层来构建网络,如下图所示。
DNN
与DNN不同的是,循环神经网络(RNN)赋予了网络对前面的内容的一种“记忆功能”,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出,如下图所示。
RNN1
在上图中,我们可以看出在RNN中有以下传递关系:
h t = U x t + W s t − 1 h_t=Ux_t+Ws_{t-1} ht=Uxt+Ws

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值