# 第五章案例代码总结与修改分析

【有问题或错误，请私信我将及时改正；借鉴文章标明出处，谢谢】

## 5-1

import pandas as pd
filename = 'F:/大二下合集/Python数据分析与挖掘/bankloan.xls'
x = data.iloc[:,:8].as_matrix()
y = data.iloc[:,8].as_matrix()
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
rlr = RLR() #建立随机逻辑回归模型，筛选变量
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果，也可以通过.scores_方法获取各个特征的分数
print(u'通过随机逻辑回归模型筛选特征结束。')
print(u'有效特征为：%s' % ','.join(data.columns[rlr.get_support(8)]))
x = data[data.columns[rlr.get_support()]].as_matrix() #筛选好特征
lr = LR() #建立逻辑回归模型
lr.fit(x, y) #用筛选后的特征数据来训练模型
print(u'逻辑回归模型训练结束。')
print(u'模型的平均正确率为：%s' % lr.score(x, y)) #给出模型的平均正确率，本例为81.4%


AttributeError: 'DataFrame' object has no attribute 'as_matrix'


TypeError: 'numpy.ndarray' object is not callable


ImportError: cannot import name 'RandomizedLogisticRegression'


from sklearn.linear_model import RandomizedLogisticRegression


git clone https://github.com/scikit-learn-contrib/stability-selection.git
pip install -r requirements.txt
python setup.py install


error: [WinError 32] 另一个程序正在使用此文件，进程无法访问。: 'd:\\python\\miniconda3_py3.6_x64_jb51\\lib\\site-packages\\stability_selection-0.0.1-py3.6.egg'


from stability_selection.randomized_lasso import RandomizedLogisticRegression


AttributeError: 'RandomizedLogisticRegression' object has no attribute 'get_support'


## 5-2

#-*- coding: utf-8 -*-
import pandas as pd
inputfile = 'F:/大二下合集/Python数据分析与挖掘/sales_data.xls'
data[data == u'好'] = 1
data[data == u'是'] = 1
data[data == u'高'] = 1
data[data != 1] = -1
x = data.iloc[:, :3].as_matrix().astype(int)
y = data.iloc[:, 3].as_matrix().astype(int)
from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion='entropy')
dtc.fit(x, y)
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
with open("tree.dot", 'w') as f:
f = export_graphviz(dtc, feature_names=x.columns, out_file=f)


x = data.iloc[:, :3].as_matrix().astype(int)
y = data.iloc[:, 3].as_matrix().astype(int)


x = data.iloc[:, :3].values.astype(int)
y = data.iloc[:, 3].values.astype(int)


f = export_graphviz(dtc, feature_names=x.columns, out_file=f)


x = pd.DataFrame(x)


## 5-3

#-*- coding: utf-8 -*-
#使用神经网络算法预测销量高低
import pandas as pd
#参数初始化
inputfile = 'F:/大二下合集/Python数据分析与挖掘/sales_data.xls'
data = pd.read_excel(inputfile, index_col = u'序号') #导入数据
#数据是类别标签，要将它转换为数据
#用1来表示“好”、“是”、“高”这三个属性，用0来表示“坏”、“否”、“低”
data[data == u'好'] = 1
data[data == u'是'] = 1
data[data == u'高'] = 1
data[data != 1] = 0
x = data.iloc[:,:3].as_matrix().astype(int)
y = data.iloc[:,3].as_matrix().astype(int)
from keras.models import Sequential
from keras.layers.core import Dense, Activation
model = Sequential() #建立模型
model.add(Dense(input_dim = 3, output_dim = 10))
model.add(Dense(input_dim = 10, output_dim = 1))
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', class_mode = 'binary')
#编译模型。由于我们做的是二元分类，所以我们指定损失函数为binary_crossentropy，以及模式为binary
#另外常见的损失函数还有mean_squared_error、categorical_crossentropy等，请阅读帮助文件。
model.fit(x, y, nb_epoch = 1000, batch_size = 10) #训练模型，学习一千次
yp = model.predict_classes(x).reshape(len(y)) #分类预测
from cm_plot import * #导入自行编写的混淆矩阵可视化函数
cm_plot(y,yp).show() #显示混淆矩阵可视化结果


model.compile(loss = 'binary_crossentropy', optimizer = 'adam', class_mode = 'binary')


model.compile(loss = 'binary_crossentropy', optimizer = 'adam')


cm_plot是个自定义函数，你还没有这个函数

#-*- coding: utf-8 -*-
def cm_plot(y, yp):
from sklearn.metrics import confusion_matrix #导入混淆矩阵函数
cm = confusion_matrix(y, yp) #混淆矩阵
import matplotlib.pyplot as plt #导入作图库
plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图，配色风格使用cm.Greens，更多风格请参考官网。
plt.colorbar() #颜色标签
for x in range(len(cm)): #数据标签
for y in range(len(cm)):
plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
plt.ylabel('True label') #坐标轴标签
plt.xlabel('Predicted label') #坐标轴标签
return plt


## 5-4

#-*- coding: utf-8 -*-
#使用K-Means算法聚类消费行为特征数据
import pandas as pd
#参数初始化
inputfile = 'F:/大二下合集/Python数据分析与挖掘/consumption_data.xls' #销量及其他属性数据
outputfile = 'F:/大二下合集/Python数据分析与挖掘/data_type.xls' #保存结果的文件名
k = 3 #聚类的类别
iteration = 500 #聚类最大循环次数
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化
from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类，并发数4
model.fit(data_zs) #开始聚类
#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接（0是纵向），得到聚类中心对应的类别下的数目
r.columns = list(data.columns) + [u'类别数目'] #重命名表头
print(r)
#详细输出原始数据及其类别
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
r.to_excel(outputfile) #保存结果
def density_plot(data): #自定义作图函数
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
p = data.plot(kind='kde', linewidth = 2, subplots = True, sharex = False)
[p[i].set_ylabel(u'密度') for i in range(k)]
plt.legend()
return plt
pic_output = 'F:/大二下合集/Python数据分析与挖掘/pd_' #概率密度图文件名前缀
for i in range(k):
density_plot(data[r[u'聚类类别']==i]).savefig(u'%s%s.png' %(pic_output, i))


## 5-5

#-*- coding: utf-8 -*-
#接k_means.py
from sklearn.manifold import TSNE
tsne = TSNE()
tsne.fit_transform(data_zs) #进行数据降维
tsne = pd.DataFrame(tsne.embedding_, index = data_zs.index) #转换数据格式
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
#不同类别用不同颜色和样式绘图
d = tsne[r[u'聚类类别'] == 0]
plt.plot(d[0], d[1], 'r.')
d = tsne[r[u'聚类类别'] == 1]
plt.plot(d[0], d[1], 'go')
d = tsne[r[u'聚类类别'] == 2]
plt.plot(d[0], d[1], 'b*')
plt.show()


#-*- coding: utf-8 -*-
#接k_means.py
import pandas as pd
inputfile = 'F:/大二下合集/Python数据分析与挖掘/consumption_data.xls'
outputfile = 'F:/大二下合集/Python数据分析与挖掘/data_type.xls'
k = 3
iteration = 500
data = pd.read_excel(inputfile, index_col = 'Id')
data_zs = 1.0*(data - data.mean())/data.std()
from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration)
model.fit(data_zs)
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2, r1], axis = 1)
r.columns = list(data.columns) + [u'类别数目']
print(r)
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)
r.columns = list(data.columns) + [u'聚类类别']
r.to_excel(outputfile)


## 5-6

import pandas as pd
from apriori import * #导入自行编写的apriori函数
outputfile = 'F:/大二下合集/Python数据分析与挖掘/apriori_rules.xls' #结果文件
print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数，非空值转换成‘1’
b = map(ct, data.values) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换，空值用0填充
print(u'\n转换完毕。')
del b #删除中间变量b，节省内存
support = 0.2 #最小支持度
confidence = 0.5 #最小置信度
ms = '---' #连接符，默认'--'，用来区分不同元素，如A--B。需要保证原始表格中不含有该字符
find_rule(data, support, confidence, ms).to_excel(outputfile) #保存结果


cm_plot是个自定义函数，你还没有这个函数

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd
#自定义连接函数，用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i:sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i,len(x)):
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
return r
#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
support_series = 1.0*d.sum()/len(d) #支持度序列
column = list(support_series[support_series > support].index) #初步根据支持度筛选
k = 0
while len(column) > 1:
k = k+1
print(u'\n正在进行第%s次搜索...' %k)
column = connect_string(column, ms)
print(u'数目：%s...' %len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
#创建连接数据，这一步耗时、耗内存最严重。当数据集较大时，可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = []
for i in column: #遍历可能的推理，如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B？
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j]+i[j+1:]+i[j:j+1])
cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
for i in column2: #计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
result[i] = 0.0
result[i]['confidence'] = cofidence_series[i]
result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理，输出
print(u'\n结果为：')
print(result)
return result


## 5-7

#-*- coding: utf-8 -*-
#arima时序模型
import pandas as pd
#参数初始化
discfile = 'F:/大二下合集/Python数据分析与挖掘/arima_data.xls'
forecastnum = 5
#读取数据，指定日期列为指标，Pandas自动将“日期”列识别为Datetime格式
data = pd.read_excel(discfile, index_col = u'日期')
#时序图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
data.plot()
plt.show()
#自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data).show()
#平稳性检测
#差分后的结果
D_data = data.diff().dropna()
D_data.columns = [u'销量差分']
D_data.plot() #时序图
plt.show()
plot_acf(D_data).show() #自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data).show() #偏自相关图
#白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print(u'差分序列的白噪声检验结果为：', acorr_ljungbox(D_data, lags=1)) #返回统计量和p值
from statsmodels.tsa.arima_model import ARIMA
data[u'销量'] = data[u'销量'].astype(float)
#定阶
pmax = int(len(D_data)/10) #一般阶数不超过length/10
qmax = int(len(D_data)/10) #一般阶数不超过length/10
bic_matrix = [] #bic矩阵
for p in range(pmax+1):
tmp = []
for q in range(qmax+1):
try: #存在部分报错，所以用try来跳过报错。
tmp.append(ARIMA(data, (p,1,q)).fit().bic)
except:
tmp.append(None)
bic_matrix.append(tmp)
bic_matrix = pd.DataFrame(bic_matrix) #从中可以找出最小值
p,q = bic_matrix.stack().idxmin() #先用stack展平，然后用idxmin找出最小值位置。
print(u'BIC最小的p值和q值为：%s、%s' %(p,q))
model = ARIMA(data, (p,1,q)).fit() #建立ARIMA(0, 1, 1)模型
model.summary2() #给出一份模型报告
model.forecast(5) #作为期5天的预测，返回预测结果、标准误差、置信区间。


model.summary2() #给出一份模型报告
model.forecast(5) #作为期5天的预测，返回预测结果、标准误差、置信区间。


print(model.summary2()) #给出一份模型报告
print(model.forecast(5)) #作为期5天的预测，返回预测结果、标准误差、置信区间。


## 5-8

#-*- coding: utf-8 -*-
#使用K-Means算法聚类消费行为特征数据
import numpy as np
import pandas as pd
#参数初始化
inputfile = 'F:/大二下合集/Python数据分析与挖掘/consumption_data.xls' #销量及其他属性数据
k = 3 #聚类的类别
threshold = 2 #离散点阈值
iteration = 500 #聚类最大循环次数
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化
from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类，并发数4
model.fit(data_zs) #开始聚类
#标准化数据及其类别
r = pd.concat([data_zs, pd.Series(model.labels_, index = data.index)], axis = 1)  #每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
norm = []
for i in range(k): #逐一处理
norm_tmp = r[['R', 'F', 'M']][r[u'聚类类别'] == i]-model.cluster_centers_[i]
norm_tmp = norm_tmp.apply(np.linalg.norm, axis = 1) #求出绝对距离
norm.append(norm_tmp/norm_tmp.median()) #求相对距离并添加
norm = pd.concat(norm) #合并
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
norm[norm <= threshold].plot(style = 'go') #正常点
discrete_points = norm[norm > threshold] #离群点
discrete_points.plot(style = 'ro')
for i in range(len(discrete_points)): #离群点做标记
id = discrete_points.index[i]
n = discrete_points.iloc[i]
plt.annotate('(%s, %0.2f)'%(id, n), xy = (id, n), xytext = (id, n))
plt.xlabel(u'编号')
plt.ylabel(u'相对距离')
plt.show()


【有问题或错误，请私信我将及时改正；借鉴文章标明出处，谢谢】

05-23 205

05-07 795

05-09 1345

02-09 1381

03-20 2725

08-23

05-21 5万+

06-30 2万+

06-02 1万+

09-08 8565

05-22 205

05-22 217

04-01 717

07-09 787

05-02 30

08-22 275

05-29 2852

06-18 6497

05-02 22

05-22 230

#### 《Python数据分析与挖掘实战》张良均，第一章学习笔记

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试