【技能---onnxruntime (C++/CUDA) 编译安装制定版本及部署】

onnxruntime安装编译

主要介绍C++版本的onnxruntime安装编译及其使用

基础编译环境要求

不同版本ONNXRuntime C++对于cmake版本有不同的需求。

例如:

onnxruntime 1.14.1 需要camke3.26.0及以上,gcc版本: 9及以上。

你可以通过以下两个命令查看cmake和gcc的版本。

cmake --version
gcc --version

对应的cmake版本升级,可以参考这篇博客。----升级cmake

克隆ONNX Runtime源代码仓库

运行下面两行命令:

git clone --recursive https://github.com/Microsoft/onnxruntime
cd onnxruntime/


这里可以指定版本onnxruntime版本,运行这一命令:

git checkout v1.8.0

这里建议checkout到旧tag,否则容易因为版本过新而编译失败,比如Cmake版本要求过高、CUDA版本不匹配等问题。若跟随网上其他教程,大概率会因为版本过新而导致后续编译失败。

配置和构建ONNX Runtime

./build.sh --config Release --build_shared_lib --parallel

提示: 这将使用CMake进行配置,并使用Release配置项构建ONNX Runtime共享库。--parallel选项可用于并行构建以加快速度。

安装ONNX Runtime

安装ONNX Runtime共享库和头文件。

cd build/Linux/Release
sudo make install

至此,ONNXRuntime C++ API成功编译完成

要在CentOS 8上安装ONNX Runtime (ORT),你需要遵循一些步骤。ONNX Runtime是一个开源库,用于运行机器学习模型。以下是安装的基本流程: 1. **更新包管理器**: ```bash sudo yum update -y ``` 2. **安装依赖**: ORT需要Python的基础环境,所以首先安装Python3(如果尚未安装): ```bash sudo yum install epel-release -y sudo yum install python3 -y ``` 然后安装pip3,它是Python的包管理器: ```bash sudo yum install python3-pip -y ``` 3. **安装pip3额外的工具**: ```bash pip3 install wheel ``` 4. **下载并安装ONNX Runtime**: ONNX Runtime有官方的Python包,可以从其GitHub仓库获取: ```bash git clone https://github.com/microsoft/onnxruntime.git cd onnxruntime ``` 完成克隆后,导航到`cmake`文件夹并创建一个构建目录: ```bash mkdir build cd build ``` 5. **配置编译选项**: 创建一个CMakeLists.txt文件,如果已存在则打开编辑器(例如nano): ```bash nano CMakeLists.txt ``` 添加以下内容,配置为使用CPU版本,并启用Python接口(更多选项可以参考文档): ```cmake cmake .. \ -DCMAKE_BUILD_TYPE=Release \ -DPYTHON_EXECUTABLE=$(which python3) \ -DONNXRUNTIME_USE_MSVC_RUNTIME_LIBRARY_DLL=False \ -DUSE_CUDA=OFF \ -DUSE_OPENVINO=OFF \ -DUSE_MKLDNN=OFF \ -DUSE_TENSORRT=OFF \ -DUSE_NCCL=OFF \ -DUSE_ROCM=OFF \ -A x64 ``` 按`Ctrl+X`保存并退出。 6. **编译安装**: ```bash make -j$(nproc) sudo make install ``` 7. **检查安装**: 最后,你可以通过Python测试ONNX Runtime是否成功安装: ```bash python3 -c "import onnxruntime; print(onnxruntime.__version__)" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值