前言
学习的一个新的知识点 **domain gap**一、domain gap 是什么?
图像及点云的标注的一件非常耗时、无聊、繁琐的事情。人工标注的成本高、耗时长,因此人们会用计算机合成的图像数据集进行语义分割模型的训练。合成的数据集称为 source domain(源域),真实世界的数据集称为target domain(目标域)。
通常我们会使用源域中的数据进行训练模型,然后将在目标域进行分割预测时往往会产生很多错误的标签,称为伪标签噪声。
由于不同的数据集之间的目标分布不同,即源域和目标域之间存在域差距——Domain Gap 导致这种现象产生。
二、解决办法
1.无监督域自适应(UDA)缩小domain gap
Unsupervised Domain Adaptation ——UDA
无监督邻域自适应
i.i.d identical and independent distribution
独立同分布
2.对抗的方法
3.自训练的方法
总结
本文仅仅简单介绍了 domain gap及其相关的一些内容。