lr、lr sched、1x和3x都是什么?

学习率(Learning Rate)、学习率调度(Learning Rate Scheduler)和训练策略详解

在深度学习和机器学习模型的训练过程中,优化算法的设置和调度策略的选择对模型的性能和收敛速度有着至关重要的影响。本文将详细介绍学习率(Learning Rate, lr)、学习率调度器(Learning Rate Scheduler, lr sched)以及常见的训练策略(如1x策略和3x策略)。

1. lr (Learning Rate)

学习率是优化算法中最重要的超参数之一,它决定了每次参数更新的步长大小。具体解释如下:

  • 定义: 学习率控制着每次参数更新时步长的大小。在梯度下降过程中,参数沿着梯度的反方向调整,学习率决定了调整步长的大小。
  • 重要性:
    • 过大: 如果学习率过大,可能会导致参数在学习过程中跳跃过最优解,导致训练过程不稳定或无法收敛。
    • 过小: 如果学习率过小,训练过程会变得非常缓慢,而在某些情况下可能会陷入局部最优解而难以跳出。
  • 典型值: 常见的初始学习率范围在0.001到0.1之间,但具体值需要根据具体任务和模型进行调节。

2. lr sched (Learning Rate Scheduler)

学习率调度器是指在训练过程中动态调整学习率的策略。其目的是为了优化训练过程,使模型能够更快、更稳定地收敛到更优解。以下是几种常见的学习率调度策略:

  • 恒定学习率(Constant LR): 学习率在整个训练过程中保持不变。这是最简单的一种策略,但通常只有在模型和数据较简单时才使用。

  • Step LR:

    • MultiStepLR: 在预设的epoch数时,将学习率乘以一个固定的因子(例如0.1)。
    • StepLR: 每隔预设的固定步长,学习率乘以一个固定的因子(例如0.1)。
  • Exponential Decay: 每个epoch将学习率按照一个指数衰减函数进行衰减。

  • Cosine Annealing: 学习率按余弦函数周期性地衰减,在训练快结束时降低到最小值。

  • Cyclical Learning Rate (CLR): 学习率在两个边界之间不断循环变化,从而避免陷入局部最优。

  • 自适应学习率方法(Adaptive Methods):

    • ReduceLROnPlateau: 监视某个指标(如验证集的损失),如果该指标在若干epoch内未能改善,则降低学习率。
    • 预热策略(Warm-up): 在训练的初始阶段逐步增加学习率,以避免起始阶段参数的剧烈变化。

例子

下面是Python代码示例,展示了如何在PyTorch中使用学习率调度器:

import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler

# 创建一个优化器,例如 SGD
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

# StepLR调度器
step_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

# MultiStepLR调度器
multistep_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[30, 60, 90], gamma=0.1)

# ReduceLROnPlateau调度器
reduce_on_plateau_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)

# Cosine Annealing调度器
cosine_scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=100)

# 在训练循环中应用调度器
for epoch in range(num_epochs):
    train(...)
    validate(...)

    # StepLR 和 MultiStepLR 调度器更新
    step_lr_scheduler.step()
    multistep_lr_scheduler.step()

    # ReduceLROnPlateau 调度器更新
    reduce_on_plateau_scheduler.step(validation_loss)

    # Cosine Annealing 调度器更新
    cosine_scheduler.step()
3. 1x策略和3x策略

在深度学习模型训练中,常用的1x策略和3x策略代表了不同的学习率调度方法和训练周期。

在Faster R-CNN等目标检测模型的训练中,具体到1x策略和3x策略,学习率的调整一般有比较明确的设定。这里我将详细讲解每种策略中学习率的调整细节。

1x策略(1倍学习率调度)
  • Epoch: 通常设置为12个epochs。
  • 初始学习率(Initial Learning Rate, LR): 起始时设定较高的学习率,常见的初始值为0.02。
  • 学习率调整点: 在训练的中期和末期进行调整。
    • 第一次LR下降: 在8个epochs后将学习率通常降低为初始学习率的1/10。例如,0.02降至0.002。
    • 第二次LR下降: 在11个epochs时再次降低。例如,从0.002降至0.0002。
  • 具体调整算法: 基于预定义的学习率下降策略,如StepLR策略。
3x策略(3倍学习率调度)
  • Epoch: 通常设置为36个epochs。
  • 初始学习率(Initial Learning Rate, LR): 依然是较高的初始值,常见的例如0.02。
  • 学习率调整点: 具有更长的训练周期,因此在更多的点逐渐降低学习率。
    • 第一次LR下降: 在24个epochs时将学习率降低为初始学习率的1/10。例如,0.02降至0.002。
    • 第二次LR下降: 在33个epochs时再次降低。例如,从0.002降至0.0002。
  • 具体调整算法: 同样基于StepLR策略,但随着epoch数的增加进行更多阶段的下降。
举例说明

假设初始学习率为0.02:

对于1x策略:
  • Epoch 1-8: 学习率保持0.02。
  • Epoch 9-11: 学习率降为0.002。
  • Epoch 12: 学习率进一步降为0.0002。
对于3x策略:
  • Epoch 1-24: 学习率保持0.02。
  • Epoch 25-33: 学习率降为0.002。
  • Epoch 34-36: 学习率进一步降为0.0002。

4. 实例代码示例

以下是一个完整的基于PyTorch的训练脚本,展示了如何应用1x策略和3x策略设置学习率调度器:

import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler

# 定义模型
model = MyModel()

# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.02, momentum=0.9, weight_decay=5e-4)

# 选择1x策略
scheduler_1x = lr_scheduler.MultiStepLR(optimizer, milestones=[8, 11], gamma=0.1)

# 选择3x策略
scheduler_3x = lr_scheduler.MultiStepLR(optimizer, milestones=[24, 33], gamma=0.1)

def train_model(scheduler, num_epochs):
    for epoch in range(num_epochs):
        # 训练过程
        model.train()
        for batch in train_loader:
            optimizer.zero_grad()
            outputs = model(batch['input'])
            loss = loss_fn(outputs, batch['target'])
            loss.backward()
            optimizer.step()

        # 验证过程
        model.eval()
        with torch.no_grad():
            for batch in val_loader:
                outputs = model(batch['input'])
                validation_loss_fn(outputs, batch['target'])

        # 调整学习率
        scheduler.step()
        print(f'Epoch {epoch+1}/{num_epochs}, Learning Rate: {optimizer.param_groups[0]["lr"]}')

# 使用1x策略训练12个epoch
train_model(scheduler_1x, 12)

# 使用3x策略训练36个epoch
train_model(scheduler_3x, 36)

总结

本文详细介绍了学习率(lr)、学习率调度策略(lr sched)、以及深度学习模型的常见训练策略(1x策略和3x策略)的基本概念、作用和实现方法。合理的学习率设置和调度策略可以极大地提升模型的训练效果和效率。通过结合具体任务和数据集的特性,优化这些超参数,可以更好地发挥深度学习模型的潜力。希望本文能够为您的深度学习模型训练提供有价值的参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值